Correlation for Permutations

Robert Johnson¹ Imre Leader² Eoin Long³

¹Queen Mary, University of London

²University of Cambridge

³University of Birmingham

January 31, 2022

https://arxiv.org/abs/1909.03770

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

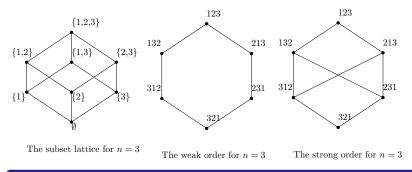
Extremal Set Theory

- $X = [n] = \{1, 2, ..., n\}$ (finite ground set)
- Power set $\mathcal{P}(X)$ (set of all subsets of X)
- $\mathcal{F} \subseteq \mathcal{P}(X)$ (a family of sets)
- Results involving relations between properties of *F*

Permutations

- *S_n* set of all permutations (ordered *n*-tuples) of *X*.
- $\mathcal{F} \subseteq S_n$ (a family of permutations)
- Aim: Results inspired by extremal set results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの



Aim

We seek results about permutation orders (righthand two figures) inspired by results on the hypercube (lefthand figure).

ヘロア ヘビア ヘビア・

ъ

The Harris-Kleitman Inequality

Up-sets

$$\mathcal{F} \subseteq \mathcal{P}(X)$$
 is an up-set if: $F \in \mathcal{F}$, $x \in X \implies F \cup \{x\} \in \mathcal{F}$

Theorem (Harris 1960, Kleitman 1966)

If $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(X)$ are up-sets then

 $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \geqslant \mathbb{P}(\mathcal{A}) \times \mathbb{P}(\mathcal{B}) \qquad (\textit{where } \mathbb{P}(\mathcal{F}) = |\mathcal{F}|/2^n)$

Application

In a random graph $G \sim G(N, 1/2)$, the events " G contains a triangle" and "G is Hamiltonian" are positively correlated.

• Let $X = E(K_N)$.

- A graph corresponds to a subset of X.
- A monotone property corresponds to an up-set.

◆□ > ◆□ > ◆豆 > ◆豆 > →

э

Permutation set-up

- *X* = {1,2,...,*n*} (finite ground set)
- *S_n* set of all permutations (ordered *n*-tuples) of *X*.
- $\mathcal{F} \subseteq S_n$ (a family of permutations)
- For now, random means uniform so

$$\mathbb{P}(\mathcal{F}) = \frac{|\mathcal{F}|}{n!}$$

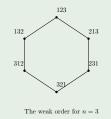
ヘロト 人間 とくほ とくほ とう

How should we define up-set?
In P(X) these came from the containment partial order.

Permutation Orders

Weak Order $<_{w}$

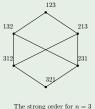
If $1 \le x < y \le n$ then $p <_w q$ when $p = (\dots yx \dots)$ $q = (\dots xy \dots)$



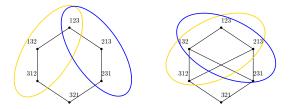
(Swap *x*, *y* in adjacent places into correct order)

Strong order <s

If $1 \le x < y \le n$ then $p <_s q$ when $p = (\dots y \dots x \dots)$ $q = (\dots x \dots y \dots)$ (Swap any x, y into correct order)



Permutation Up-Sets (Weak and Strong)



Weak up-set examples

The set of all $p \in S_n$ with "*i* before *j*" (where $1 \le i < j \le n$).

Strong up-set examples

- All $p \in S_n$ with element 1 in one of first *k* positions.
- All *p* ∈ *S_n* which have ≤ *k* inversions (ie can be written as the product of ≤ *k* adjacent transpositions).
- All $p \in S_n$ which move no element by more than k places.

Counterexample to Positive Correlation in $<_w$

$$\begin{array}{ll} \mathcal{A} = \{p \in S_n : \ 1 \ \text{appears before 2}\}, & \mathbb{P}(\mathcal{A}) = 1/2 \\ \mathcal{B} = \{p \in S_n : \ 2 \ \text{appears before 3}\}, & \mathbb{P}(\mathcal{B}) = 1/2 \\ \mathcal{A} \cap \mathcal{B} = \{p \in S_n : \ 1 \ \text{before 2 before 3}\}, & \mathbb{P}(\mathcal{A} \cap \mathcal{B}) = 1/6 \end{array}$$

Question

Is this the least correlated that weak up-sets can be?

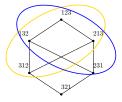
Theorem (JLL, 2020)

No! There are weak up-sets with $\mathbb{P}(\mathcal{A}) = \mathbb{P}(\mathcal{B}) = 1/2$ and

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = o(1).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Positive Correlation: Strong up-sets



Question

Do we have positive correlation for strong up-sets?

Theorem (JLL, 2020)

Yes! If $\mathcal{A}, \mathcal{B} \subseteq S_n$ are strong up-sets then

 $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \geqslant \mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Main Ingredient of Proof (Strong Case)

For
$$\mathcal{A} \subseteq S_n$$
, partition \mathcal{A} as $\mathcal{A}'_1 \cup \mathcal{A}'_2 \cup \cdots \cup \mathcal{A}'_n$ where

 $\mathcal{A}'_k = \{(p_1 \dots p_n) \in \mathcal{A} : p_k = n\}$ (element *n* in position *k*)

let A_k be the corresponding subset of S_{n-1} (delete *n* from each)

Let $\mathcal{A} \subseteq S_n$ be a strong up-set and $1 \leq x < y \leq n-1$

If
$$(\dots y \dots x \dots) \in \mathcal{A}_k$$
 then $(\dots y \dots n \dots x \dots) \in \mathcal{A}$
so $(\dots x \dots n \dots y \dots) \in \mathcal{A}$
so $(\dots x \dots y \dots) \in \mathcal{A}_k$

So each A_k is a strong up-set. This allows induction on *n*.

A little more work gives:

Theorem (JLL, 2020)

If $\mathcal{A}, \mathcal{B} \subseteq S_n$ are strong up-sets then $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \ge \mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B})$.

Non-Correlation: Weak up-sets

Take k large and n = 2k - 1.

 $\mathcal{A} = \{ p \in S_n : k \text{ is in last half of elements } 1, 2, \dots, k \}$

 $\mathcal{B} = \{ p \in S_n : k \text{ is in first half of elements } k, k + 1, \dots, n \}$

Each is a weak up-set of size n!/2. Let *p* be a random permutation

- If position of *k* in *p* is $< (\frac{1}{2} \epsilon)$ *n* then whp $p \notin A$
- If position of *k* in *p* is $> (\frac{1}{2} + \epsilon)$ *n* then whp $p \notin B$

So $|\mathcal{A} \cap \mathcal{B}| \leq 2\epsilon n!$ as required.

Theorem (JLL, 2020)

For all $0 < \alpha, \beta < 1$, there exist weak up-sets \mathcal{A}, \mathcal{B} with $\mathbb{P}(\mathcal{A}) = \alpha + o(1), \mathbb{P}(\mathcal{B}) = \beta + o(1)$ and

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \begin{cases} o(1) & \text{if } \alpha + \beta \leq 1 \\ \alpha + \beta - 1 + o(1) & \text{if } \alpha + \beta \geq 1. \end{cases}$$

Back to Proof of Correlation in the Strong Order

If
$$(\dots, y \dots, x \dots) \in \mathcal{A}_k$$
 then $(\dots, y \dots, n \dots, x \dots) \in \mathcal{A}$
so $(\dots, x \dots, n \dots, y \dots) \in \mathcal{A}$ (*)
so $(\dots, x \dots, y \dots) \in \mathcal{A}_k$

So each A_k is a strong up-set.

For weak up-sets this doesn't work -(*) fails. But could it work for some intermediate order?

Grid Order $<_g$

If
$$x < y < a_1, \ldots, a_m$$
 then $p <_g q$ when

$$p = (\dots ya_1 \dots a_m x \dots)$$
$$q = (\dots xa_1 \dots a_m y \dots)$$

(Swap x, y into correct order if all intermediate elements are larger) The grid order for n = 3Grid order for S_n is product order on $[n] \times [n-1] \times \cdots \times [2]$.

Back to Proof of Correlation in the Strong Order

If
$$(\dots, y \dots, x \dots) \in \mathcal{A}_k$$
 then $(\dots, y \dots, n \dots, x \dots) \in \mathcal{A}$
so $(\dots, x \dots, n \dots, y \dots) \in \mathcal{A}$ (*)
so $(\dots, x \dots, y \dots) \in \mathcal{A}_k$

So each \mathcal{A}_k is a strong up-set.

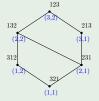
For weak up-sets this doesn't work – (*) fails. But could it work for some intermediate order?

Grid Order $<_{a}$

If
$$x < y < a_1, \ldots, a_m$$
 then $p <_g q$ when

$$p = (\dots ya_1 \dots a_m x \dots)$$
$$q = (\dots xa_1 \dots a_m y \dots)$$

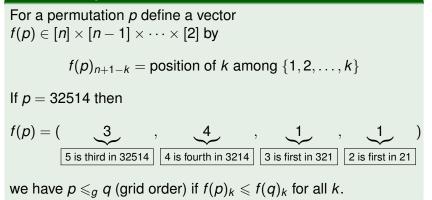
(Swap x, y into correct order if all inter-



The grid order as $[3] \times [2]$

mediate elements are larger) Grid order for S_n is product order on $[n] \times [n-1] \times \cdots \times [2]$.

Grid Order $<_g$ again



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Extensions

Working in the grid order environment gives:

- A second proof of main result using FKG inequality in grids.
- Positive correlation for up-sets in the grid order.
- Some non-uniform measures including ...

Independently Generated Measures

For each k, let X_k be a rv taking values in $\{1, ..., n+1-k\}$. Pick f(p) using X_k for coordinate k with each coordinate independent.

Have positive correlation for up-sets for these measures.

Mallows Measures (special case of above)

Fix $0 < q \leq 1$.

$$\mathbb{P}(p) = cq^{\mathsf{inv}(p)}$$

where inv(p) is the number of inversions in *p*.

 What other measures show positive correlation for strong up-sets? In particular what if

$$\mathbb{P}(p_1p_2\dots p_n) \propto q^{\sum_{i=1}^n |p_i-i|}$$

for some 0 < q < 1.

(Special case of 1-dimensional Boltzmann distribution.)

 How does the correlation between up-sets behave in orders which interpolate between weak and strong orders?

< 回 > < 回 > < 回 > … 回

More applications?