Correlation for Permutations

Robert Johnson ${ }^{1}$ Imre Leader ${ }^{2}$ Eoin Long ${ }^{3}$

${ }^{1}$ Queen Mary, University of London
${ }^{2}$ University of Cambridge
${ }^{3}$ University of Birmingham

January 31, 2022
https://arxiv.org/abs/1909.03770

Sets and Permutations

Extremal Set Theory

- $X=[n]=\{1,2, \ldots, n\} \quad$ (finite ground set)
- Power set $\mathcal{P}(X) \quad$ (set of all subsets of X)
- $\mathcal{F} \subseteq \mathcal{P}(X) \quad$ (a family of sets)
- Results involving relations between properties of \mathcal{F}

Permutations

- S_{n} set of all permutations (ordered n-tuples) of X.
- $\mathcal{F} \subseteq S_{n} \quad$ (a family of permutations)
- Aim: Results inspired by extremal set results

Preview

The subset lattice for $n=3$

The weak order for $n=3$

The strong order for $n=3$

Aim

We seek results about permutation orders (righthand two figures) inspired by results on the hypercube (lefthand figure).

The Harris-Kleitman Inequality

Up-sets

$$
\mathcal{F} \subseteq \mathcal{P}(X) \text { is an up-set if: } F \in \mathcal{F}, \quad x \in X \Longrightarrow \mathcal{F} \cup\{x\} \in \mathcal{F}
$$

Theorem (Harris 1960, Kleitman 1966)

If $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(X)$ are up-sets then

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \geqslant \mathbb{P}(\mathcal{A}) \times \mathbb{P}(\mathcal{B}) \quad\left(\text { where } \mathbb{P}(\mathcal{F})=|\mathcal{F}| / 2^{n}\right)
$$

Application

In a random graph $G \sim G(N, 1 / 2)$, the events " G contains a triangle" and " G is Hamiltonian" are positively correlated.

- Let $X=E\left(K_{N}\right)$.
- A graph corresponds to a subset of X.
- A monotone property corresponds to an up-set.

The Permutation Setting

Permutation set-up

- $X=\{1,2, \ldots, n\}$ (finite ground set)
- S_{n} set of all permutations (ordered n-tuples) of X.
- $\mathcal{F} \subseteq S_{n} \quad$ (a family of permutations)
- For now, random means uniform so

$$
\mathbb{P}(\mathcal{F})=\frac{|\mathcal{F}|}{n!}
$$

- How should we define up-set? In $\mathcal{P}(X)$ these came from the containment partial order.

Permutation Orders

Weak Order $<_{w}$

If $1 \leqslant x<y \leqslant n$ then $p<_{w} q$ when

$$
\begin{aligned}
& p=(\ldots y x \ldots) \\
& q=(\ldots x y \ldots)
\end{aligned}
$$

(Swap x, y in adjacent places into correct order)

The weak order for $n=3$

Strong order $<_{s}$

If $1 \leqslant x<y \leqslant n$ then $p<_{s} q$ when

$$
\begin{aligned}
& p=(\ldots y \ldots x \ldots) \\
& q=(\ldots x \ldots y \ldots)
\end{aligned}
$$

(Swap any x, y into correct order)

The strong order for $n=3$

Permutation Up-Sets (Weak and Strong)

Weak up-set examples

The set of all $p \in S_{n}$ with " i before j " (where $1 \leqslant i<j \leqslant n$).

Strong up-set examples

- All $p \in S_{n}$ with element 1 in one of first k positions.
- All $p \in S_{n}$ which have $\leqslant k$ inversions (ie can be written as the product of $\leqslant k$ adjacent transpositions).
- All $p \in S_{n}$ which move no element by more than k places.

Positive Correlation: Weak up-sets

Counterexample to Positive Correlation in $<_{w}$

$$
\begin{aligned}
\mathcal{A} & =\left\{p \in S_{n}: 1 \text { appears before } 2\right\}, & & \mathbb{P}(\mathcal{A})=1 / 2 \\
\mathcal{B} & =\left\{p \in S_{n}: 2 \text { appears before } 3\right\}, & & \mathbb{P}(\mathcal{B})=1 / 2 \\
\mathcal{A} \cap \mathcal{B} & =\left\{p \in S_{n}: 1 \text { before } 2 \text { before } 3\right\}, & & \mathbb{P}(\mathcal{A} \cap \mathcal{B})=1 / 6
\end{aligned}
$$

Question

Is this the least correlated that weak up-sets can be?

Theorem (JLL, 2020)

No! There are weak up-sets with $\mathbb{P}(\mathcal{A})=\mathbb{P}(\mathcal{B})=1 / 2$ and

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=o(1)
$$

Positive Correlation: Strong up-sets

Question

Do we have positive correlation for strong up-sets?
Theorem (JLL, 2020)
Yes! If $\mathcal{A}, \mathcal{B} \subseteq S_{n}$ are strong up-sets then

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \geqslant \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B})
$$

Main Ingredient of Proof (Strong Case)

For $\mathcal{A} \subseteq S_{n}$, partition \mathcal{A} as $\mathcal{A}_{1}^{\prime} \cup \mathcal{A}_{2}^{\prime} \cup \cdots \cup \mathcal{A}_{n}^{\prime}$ where

$$
\mathcal{A}_{k}^{\prime}=\left\{\left(p_{1} \ldots p_{n}\right) \in \mathcal{A}: p_{k}=n\right\} \quad \text { (element } n \text { in position } k \text {) }
$$

let \mathcal{A}_{k} be the corresponding subset of S_{n-1} (delete n from each)
Let $\mathcal{A} \subseteq S_{n}$ be a strong up-set and $1 \leqslant x<y \leqslant n-1$

$$
\begin{aligned}
& \text { If }(\ldots y \ldots x \ldots) \in \mathcal{A}_{k} \text { then }(\ldots y \ldots n \ldots x \ldots) \in \mathcal{A} \\
& \text { so }(\ldots x \ldots n \ldots y \ldots) \in \mathcal{A} \\
& \text { so }(\ldots x \ldots y \ldots) \in \mathcal{A}_{k}
\end{aligned}
$$

So each \mathcal{A}_{k} is a strong up-set. This allows induction on n.
A little more work gives:

Theorem (JLL, 2020)

If $\mathcal{A}, \mathcal{B} \subseteq S_{n}$ are strong up-sets then $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \geqslant \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B})$.

Non-Correlation: Weak up-sets

Take k large and $n=2 k-1$.

$$
\begin{aligned}
& \mathcal{A}=\left\{p \in S_{n}: k \text { is in last half of elements } 1,2, \ldots, k\right\} \\
& \mathcal{B}=\left\{p \in S_{n}: k \text { is in first half of elements } k, k+1, \ldots, n\right\}
\end{aligned}
$$

Each is a weak up-set of size $n!/ 2$.
Let p be a random permutation

- If position of k in p is $<\left(\frac{1}{2}-\epsilon\right) n$ then whp $p \notin \mathcal{A}$
- If position of k in p is $>\left(\frac{1}{2}+\epsilon\right) n$ then whp $p \notin \mathcal{B}$ So $|\mathcal{A} \cap \mathcal{B}| \leqslant 2 \epsilon n$! as required.

Theorem (JLL, 2020)

For all $0<\alpha, \beta<1$, there exist weak up-sets \mathcal{A}, \mathcal{B} with $\mathbb{P}(\mathcal{A})=\alpha+o(1), \mathbb{P}(\mathcal{B})=\beta+o(1)$ and

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})= \begin{cases}o(1) & \text { if } \alpha+\beta \leqslant 1 \\ \alpha+\beta-1+o(1) & \text { if } \alpha+\beta \geqslant 1\end{cases}
$$

Back to Proof of Correlation in the Strong Order

If $(\ldots y \ldots x \ldots) \in \mathcal{A}_{k}$ then $(\ldots y \ldots n \ldots x \ldots) \in \mathcal{A}$

$$
\begin{aligned}
& \text { so }(\ldots x \ldots n \ldots y \ldots) \in \mathcal{A} \\
& \text { so }(\ldots x \ldots y \ldots) \in \mathcal{A}_{k}
\end{aligned}
$$

So each \mathcal{A}_{k} is a strong up-set.
For weak up-sets this doesn't work - (*) fails.
But could it work for some intermediate order?
Grid Order $<g$
If $x<y<a_{1}, \ldots, a_{m}$ then $p<_{g} q$ when

$$
\begin{aligned}
& p=\left(\ldots y a_{1} \ldots a_{m} x \ldots\right) \\
& q=\left(\ldots x a_{1} \ldots a_{m} y \ldots\right)
\end{aligned}
$$

(Swap x, y into correct order if all intermediate elements are larger)

The grid order for $n=3$

Grid order for S_{n} is product order on $[n] \times[n-1] \times \cdots \times[2]$.

Back to Proof of Correlation in the Strong Order

If $(\ldots y \ldots x \ldots) \in \mathcal{A}_{k}$ then $(\ldots y \ldots n \ldots x \ldots) \in \mathcal{A}$

$$
\begin{aligned}
& \text { so }(\ldots x \ldots n \ldots y \ldots) \in \mathcal{A} \\
& \text { so }(\ldots x \ldots y \ldots) \in \mathcal{A}_{k}
\end{aligned}
$$

So each \mathcal{A}_{k} is a strong up-set.
For weak up-sets this doesn't work - (*) fails.
But could it work for some intermediate order?
Grid Order $<g$
If $x<y<a_{1}, \ldots, a_{m}$ then $p<_{g} q$ when

$$
\begin{aligned}
& p=\left(\ldots y a_{1} \ldots a_{m} x \ldots\right) \\
& q=\left(\ldots x a_{1} \ldots a_{m} y \ldots\right)
\end{aligned}
$$

(Swap x, y into correct order if all intermediate elements are larger)

Grid order for S_{n} is product order on $[n] \times[n-1] \times \cdots \times[2]$.

Grid Orders

Grid Order $<_{g}$ again

For a permutation p define a vector

$$
f(p) \in[n] \times[n-1] \times \cdots \times[2] \text { by }
$$

$$
f(p)_{n+1-k}=\text { position of } k \text { among }\{1,2, \ldots, k\}
$$

If $p=32514$ then

we have $p \leqslant_{g} q$ (grid order) if $f(p)_{k} \leqslant f(q)_{k}$ for all k.

Extensions

Working in the grid order environment gives:

- A second proof of main result using FKG inequality in grids.
- Positive correlation for up-sets in the grid order.
- Some non-uniform measures including ...

Independently Generated Measures

For each k, let X_{k} be a rv taking values in $\{1, \ldots, n+1-k\}$. Pick $f(p)$ using X_{k} for coordinate k with each coordinate independent.

Have positive correlation for up-sets for these measures.
Mallows Measures (special case of above)
Fix $0<q \leqslant 1$.

$$
\mathbb{P}(p)=c q^{\operatorname{inv}(p)}
$$

where $\operatorname{inv}(p)$ is the number of inversions in p.

Questions

- What other measures show positive correlation for strong up-sets? In particular what if

$$
\mathbb{P}\left(p_{1} p_{2} \ldots p_{n}\right) \propto q^{\sum_{i=1}^{n}\left|p_{i}-i\right|}
$$

for some $0<q<1$.
(Special case of 1-dimensional Boltzmann distribution.)

- How does the correlation between up-sets behave in orders which interpolate between weak and strong orders?
- More applications?

