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Minimum degree thresholds in graphs

Problem
Determine the minimum degree threshold that ensures a graph G contains
a given (spanning) subgraph H .

Hamilton cycle (Dirac, 1952)

• δ(G) ≥ n/2

Perfect Kr-tiling (Hajnal and Szemerédi, 1970)

• δ(G) ≥ (1− 1/r)n

Perfect H-tiling (Kühn and Osthus, 2009)

• δ(G) ≥ (1− 1/χ⋆(H))n+O(1),

where χ⋆(H) ∈
{
χ(H), (χ(H)−1)|H|

|H|−σ(H)

}
and σ(H) denotes the minimum size

of the smallest colour class in a colouring of H with χ(H) colours.
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Thresholds in random graphs

The random graph G(n, p) has vertex set [n] := {1, ..., n} and each pair is an
edge with probability p, independently of all other choices.

t(n) is a threshold for a property A if, for every p(n),

lim
n→∞

P
(
G(n, p) ∈ A

)
=

{
0 if p(n) = o(t(n)),

1 if p(n) = ω(t(n)).

Theorem (Bollobás – Thomason, 1987)
Every non-trivial monotone property A has a threshold.

A is monotone if it is closed under addition of edges
(containing H as subgraph vs. containing H as induced subgraph)
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Thresholds in random graphs

There has been a lot of work in this area.

Problem
Determine the threshold at which G(n, p) contains a.a.s. a given spanning
subgraph H .

Hamilton cycle (Pósa | Koršunov, 1976)
• t(n) = n−1 log n

Perfect Kr-tiling (Johansson, Kahn and Vu, 2008)

• t(n) = n−2/r(log n)2/(r
2−r)

• Conjectured the thresholds for perfect H-tiling for every H ; resolved the
case when H is a strictly balanced graph;

• Gerke and McDowell (2015) gave a proof when H is a non vertex-balanced
graph.
The problem is still open for some graphs H .
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Randomly perturbed graphs

Problem
Starting from a (dense) graph, determine how many random edges need to
be added to ensure that the resulting graph a.a.s. contains a given spanning
subgraph H .

Definition (Bohman, Frieze and Martin, 2003)
Let α, p ∈ [0, 1], n ∈ N and Gα be a graph on n vertices with minimum
degree at least αn. We call Gα ∪G(n, p) a randomly perturbed graph.

Problem revised
Given α, determine the threshold at which Gα ∪G(n, p) contains a.a.s. a
given spanning subgraph H .

• The dense graph ’helps’ G(n, p) to have the spanning structure. (small α)
• Random edges ’help’ the dense graph to have the spanning structure.

(small p)
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Randomly perturbed graphs: Hamiltonicity

Problem revised
Given α, determine the threshold t(n) at which Gα ∪G(n, p) contains a.a.s.
a given spanning subgraph H :

0-s: If p(n) = o(t(n)), then, for all n, there is an n-vertex Gα such that
Gα ∪G(n, p) a.a.s. does not contain a perfect H-tiling.

1-s: If p(n) = ω(t(n)), then, for all n-vertex Gα, we have that Gα ∪G(n, p)

a.a.s. contains a perfect H-tiling.

Theorem (Bohman, Frieze and Martin, 2003)
For every α > 0, there is a C = C(α) such that with p ≥ C/n, a.a.s.
Gα ∪G(n, p) is Hamiltonian.

α α = 0 0 < α < 1/2 1/2 ≤ α

t(n) n−1 log n n−1 0

One sees a decrease in the probability threshold (by a logarithmic factor).
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Randomly perturbed graphs: Perfect tilings

Theorem (Balogh, Treglown and Wagner, 2019)
Let r ≥ 2. For every α > 0, there is a C = C(α, r) such that with p ≥ Cn−2/r ,
a.a.s. Gα ∪G(n, p) contains a perfect Kr-tiling.

α α = 0 0 < α < 1− 1
r 1− 1

r ≤ α

t(n) n−2/r(log n)2/(r
2−r) ≤ n−2/r 0

They give bounds for perfect H-tilings, for every graph H (when α > 0).

• When H = Kr , their result is optimal for 0 < α < 1/r.
• What more can be said if α ≥ 1/r?
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Randomly perturbed graphs: Perfect tilings (ctd.)

Theorem (Han, Morris and Treglown, 2020+)
Let 2 ≤ k ≤ r and 1− k

r < α < 1− k−1
r .

There is a C = C(α, r) such that with p ≥ Cn−2/k , a.a.s. Gα ∪G(n, p)

contains a perfect Kr-tiling. Moreover, this is indeed the threshold.

• The threshold exhibits a ’jumping’ behaviour.

Example for perfect K3-tiling:

α = 0 0 < α < 1/3 1/3 < α < 2/3 2/3 ≤ α

n−2/3(log n)1/3 n−2/3 n−1 0

Question
What about the boundary cases: α = 1/r, 2/r, . . . , (r − 2)/r?

• For perfect K3-tiling, the only left case is α = 1/3.
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Perfect K3-tiling: The boundary case

α = 0 0 < α < 1/3 α = 1/3 1/3 < α < 2/3 2/3 ≤ α

n−2/3(log n)1/3 n−2/3 ? n−1 0

For α = 1/3, ω(1/n) is not enough and ω(log n/n) is needed:

Theorem (Böttcher, Parczyk, Sgueglia and S., 2020+)
There exists C > 0 such that for p ≥ C log n/n the following holds.
G1/3 ∪G(n, p) a.a.s. contains a triangle factor.
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Perfect K3-tiling: Boundary case (a bit more)

Theorem (Böttcher, Parczyk, Sgueglia and S., 2020+)
For any 1/12 > β > 0 there exist γ > 0 and C > 0 such that for
4β ≤ α ≤ 1/3 and p ≥ C/n the following holds. If G

• has minimum degree at least (α− γ)n and
• is not ’β-close to the extremal graph’,

then a.a.s. G ∪G(n, p) contains min{n/3, αn} disjoint triangles.

Theorem (Böttcher, Parczyk, Sgueglia and S., 2020+)
There exists C > 0 such that for p ≥ C log n/n and any n-vertex G the
following holds. G ∪G(n, p) a.a.s. contains at least

min{n/3, δ(G)} disjoint triangles.

• ω(1/n) is enough unless the deterministic graph is close to the (unique)
extremal graph.

10



Perfect K3-tiling: Boundary case (a bit more)

Theorem (Böttcher, Parczyk, Sgueglia and S., 2020+)
For any 1/12 > β > 0 there exist γ > 0 and C > 0 such that for
4β ≤ α ≤ 1/3 and p ≥ C/n the following holds. If G

• has minimum degree at least (α− γ)n and
• is not ’β-close to the extremal graph’,

then a.a.s. G ∪G(n, p) contains min{n/3, αn} disjoint triangles.

Theorem (Böttcher, Parczyk, Sgueglia and S., 2020+)
There exists C > 0 such that for p ≥ C log n/n and any n-vertex G the
following holds. G ∪G(n, p) a.a.s. contains at least

min{n/3, δ(G)} disjoint triangles.

• ω(1/n) is enough unless the deterministic graph is close to the (unique)
extremal graph.

10



A glimpse into the proof: Extremal case

Embedding Lemma
For all d ∈ (0, 1) there are ε > 0 and C so that: Let U, V,W be of size n. If

• (V,U) and (V,W ) are (ε, d)-super-regular pairs,
• G(U,W, p) is a random bipartite graph with p ≥ C log n/n,

then a.a.s. there is a triangle factor in G[U ∪ V ∪W ].
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A glimpse into the proof: Non-extremal case

Stability tool concerning matchings
If δ(G) ≥ ( 13 − γ)n and G is not β-close to the extremal graph, then its
reduced graph R has a matching with ( 13 + 4γ)v(R) edges.
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Larger Cliques

Boundary cases for larger cliques

For a perfect K3-factor:

α = 0 0 < α < 1/3 α = 1/3 1/3 < α < 2/3 2/3 ≤ α

n−2/3(log n)1/3 n−2/3 n−1(log n) n−1 0

For a perfect K4-tiling:

α = 0 0 < α < 1/4 α = 1/4 1/4 < α < 2/4 …
n−1/2(log n)1/6 n−1/2

n−2/3(log n)1/3

n−2/3 …

False!

However, we know that if the deterministic graph is not extremal, then n−2/3

is the right threshold. Is this true in general?

A similar behaviour happens in the case of Kr-tiling for all α = 1− k
r with

2 < k < r and r ≥ 4.
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K4-tiling at n/4: More complicated than expected.

Let log3 n ≤ m ≤ n1/7 and p = n−2/3(log n)1/3.

• Construct G : take A ∪B with |A| = n/4−m and |B| = 3n/4 +m, A is an
independent set, G[B] is given by |B|/(2m) disjoint copies of Km,m and
G[A,B] is complete.

• From the construction: δ(G) ≥ n/4.
• If G ∪G(n, p) contains a K4-factor, since A only contains n/4−m vertices,
at least m copies of K4 must lie within B.

• We can build copies of K4 using both edges from G and G(n, p), but since
G[B] is bipartite, there are only seven possible types of K4.

• First moment method shows that a.a.s. G ∪G(n, p)[B] does not contain m

K4’s, so a.a.s. G ∪G(n, p) does not contain a K4-factor.

One can take small ε > 0, n7ε ≤ m ≤ n1/7 and p = n−2/3+ε.
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Ongoing work: Universality

2-universality

• F(n,∆) := {F : |V (F )| = n and ∆(F ) ≤ ∆}

A graph is 2-universal if it contains every element of F(n, 2) as a subgraph.

α α = 0 0 < α < 2/3 2/3 ≤ α

n−2/3(log n)1/3 ≤ n−2/3 0

t(n) Ferber, Kronenberg Parczyk, 2020 Aigner and Brandt,
and Luh, 2016 1993

• Not necessarily optimal for 1/3 ≤ α < 2/3.

The hardest graph to embed is the K3-factor:

In progress (Böttcher, Parczyk, Sgueglia and S.)
When α = 1/3, the threshold for 2-universality is log n/n.

• We know ω(1/n) suffices if G is not close to the extremal graph.
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Ongoing work: Universality

2-universality

• F(n,∆) := {F : |V (F )| = n and ∆(F ) ≤ ∆}

A graph is 2-universal if it contains every element of F(n, 2) as a subgraph.
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More open problems

• Balogh, Treglown and Wagner gave optimal thresholds for perfect H tiling
in Gα ∪G(n, p) for α < 1/|H|. The problem is still wide open for larger
values of α.

In progress (Böttcher, Parczyk, Sgueglia and S.)
When α = 1/3, ω(log n/n) is the correct threshold for 2-universality.

• Find the correct threshold for 3-universality in Gα ∪G(n, p).

This is much harder because F(n, 3) contains expanders while F(n, 2) only
unions of cycles and paths.

Thank you!
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