Solving hard cut problems via flow augmentation

Joint work with Eunjung Kim , Stefan Kratsch, Marcin Pilipczuk Warwick, 27 October 2020

ROYAL HOLLOWAY JNIVERSITY

Overview

ROYAL HOLLOWAY UNIVERSITY

- 1. Flow augmentation
- 2. Application: Min CSP characterization
- 3. Application: Coupled Min-Cut

Cut problems

ROYAI HOLLO

- Tractable...
 - MIN (S,T)-CUT
- ...and intractable
 - MULTIWAY CUT separate at least 3 terminals from each other
 - MULTICUT fulfil arbitrary set of cut requests (s_i, t_i)
 - BISECTION find a min-cut with n/2 vertices per side

- ...

- A parameterized problem is a problem where every input is given with a parameter k (e.g., solution size)
- A problem is **Fixed-Parameter Tractable (FPT)** parameterized by *k* if instances (for some function *f(k)*) can be solved in time $f(k) \cdot n^{O(1)}$
- The contrast (intractable) is running times like n^k or 2^n

FPT algorithms for cut problems

- MULTIWAY CUT: $2^{O(k)} \cdot O(m)$ time
 - Marx [o6]; Iwata, Oka, Yoshida [14]; Iwata, Yamagochi [18] various methods

20YA

- MULTICUT: $2^{poly(k)} \cdot n^{O(1)}$ time
 - Bousquet, Daligault, Thomassé [11/18]; Marx, Razgon [11/14] various methods
- Frameworks for cut problems
 - Treewidth reduction [Marx, O'Sullivan, Razgon 13]
 - Complete graph decomposition [CLPPS 14/19; CKLPPSW 20+]

Our sample problems

1. BI-OBJECTIVE (S,T)-CUT

- Given G = (V, E), vertices s, t, integers k, W
- Find (s, t)-cut $Z \subseteq E$ such that
 - 1. $|Z| \leq k$
 - 2. $w(Z) \leq W$ (according to edge weights w(e))
- 2. COUPLED MIN-CUT (defined later)

Bi-Objective (s,t)-Cut

• NP-hard in general [Papadimitriou, Yannakakis 01]

- Tractable if solution is min-cut:
 - Set new edge weights w'(e) = w(e) + W
 - Compute (s,t)-min cut with weights w'
 - Cut budget kW + W
- Reduction fails if $\lambda_G(s,t) < k$

Flow Augmentation

Given G = (V, E) with unknown minimal (s, t)-cut $Z \subseteq E$, and parameter k=|Z|, we can compute augmented graph G' = G + A such that

- 1. Construction of G' takes $k^{O(1)} \cdot O(m)$ time
- 2. With probability at least one in $2^{O(k \log k)}$, Z is (s,t)-min cut in G'

Bi-objective (s,t)-cut

- FPT algorithm for Bi-objective (s,t)-cut: [Time $2^{O(k \log k)} \cdot O(m \log n)$]
 - **1.** Repeat $2^{\Theta(k \log k)}$ times:
 - Compute augmentation G'=G+A with target flow $\lambda_{G+A}(s,t) = k$
 - Solve problem as if Z is min-cut in G'
 - 2. Return cheapest solution found

This is a toy problem – but this is a competitive running time

Results overview

ROYAL HOLLOWAY UNIVERSITY OF LONDON Min SAT(Γ) trichotomy

Flow Augmentation

Coupled Min-Cut FPT algorithm

Min SAT problem family

Min SAT(Γ) with constraint language Γ:

- Input: Formula $F = R_1(X_1) \land R_2(X_2) \land \cdots$ of constraints $R_i \in \Gamma$; integer k
- **Question:** Is there an assignment to F with at most k false constraints $R_i(X_i)$?

Examples:

• **Undirected (s,t)-Cut:** Language $\Gamma = \{0, 1, (x = y)\}$:

•
$$F = (s = 1) \land (s = v_1) \land (v_1 = v_2) \land \dots \land (t = 0)$$

- Edge Bipartization: Language $\Gamma = \{(x \neq y)\}$
- Almost 2-SAT: Language $\Gamma = \{(x \lor y), (x \lor \overline{y}), (\overline{x} \lor \overline{y})\}$
- ℓ -Chain SAT: $\Gamma = \{0, 1, (x_0 \to x_1 \to \dots \to x_\ell)\}$

Min SAT characterization result

For every Boolean language Γ , one of the following holds:

- 1. Min SAT(Γ) is **FPT** (using flow augmentation)
- 2. Min SAT(Γ) is **W[1]-hard**
- 3. Min SAT(Γ) encompasses **directed cut problems** (such as ℓ -Chain SAT)

Define two relations:

- $R_4(a, b, c, d) \equiv (a = b) \land (c = d) \land (\overline{a} \lor \overline{c})$
- $R_{hard}(a, b, c, d) \equiv (a = b) \land (c = d)$ Then:
- Min SAT(Γ) with $\Gamma = \{0, 1, R_4\}$ defines Coupled Min-Cut and is FPT
- Min SAT(Γ) with $\Gamma = \{0, 1, R_{hard}\}$ is W[1]-hard (double equality)

Min SAT cases – further details

Min SAT(\Gamma) falls into one of the following cases (up to duality):

- 1. Reduces to relation $(a = 0) \land (b = 1) \land (c \neq d)$ [EDGE BIPARTIZATION]
- 2. Reduces to $(a = 1) \land (c = d)$ and $(\overline{x}_1 \lor \cdots \lor \overline{x}_d)$ [GRAPH PAIR CUT, etc.]
- 3. Generalized Coupled Min-Cut (GCMC)
- 4. W[1]-hard
- 5. Implements directed graph cut problems

Cases 1-3 FPT, cases 1-2 use standard methods.

Coupled Min-Cut

ROYAL HOLLOWAY UNIVERSITY

Graph formulation:

- Graph G = (V, E), vertices s, t, budget bound k
- Looking for (*s*, *t*)-cut *Z* of cost at most *k*
- Edges of *E* are grouped into **pairs** (*e*, *f*) where
 - 1. Edges *e*, *f* can be cut simultaneously at cost 1, but
 - 2. if edges *e*, *f* **not** cut then at most one edge is on the *s*-side of the cut

Coupled Min-Cut properties

- NP-hard in general
- Tractable (FPT) if Z is min-cut
- EDGE MULTICUT \leq_{FPT} COUPLED MIN-CUT
- Impervious (?) to previous methods
 - Important separators, shadow removal, decomposition methods don't apply

ROYAI

- LP duality???

Flow Augmentation overview

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Flow Augmentation

- Graph G = (V, E), vertices s, t, target flow k
- Unknown minimal (s, t)-cut Z, |Z| = k

Task:

• Add edges A to G so that Z is (s, t)-min cut in G + A

Flow Augmentation observations

- 1. G Z partitions into two components H_s , H_t
- 2. Adding (u, v) to A **forbidden** if and only if $u \in H_s$, $v \in H_t$
- 3. Suffices to:
 - a. Add edges to A increasing (s, t)-max-flow, such that
 - b. No such edge is **forbidden**

A strategy

ROYAL HOLLOWAY UNIVERSITY

- Trace "all" min-cuts from s to t
- Guess how Z interacts with each one
- Add augmenting edges consistent with the guess

Reasons it could work:

- If a cut C is entirely in H_s (or H_t), there are no bad guesses
- If we can control "mixed" cuts C intersecting both components, there may be only f(k) places where we need to guess correctly

Sequences of min-cuts

- Sequence of closest disjoint min-cuts C_1, C_2, \dots
- Blocks V_i: Sets of vertices between C_i's
- Bundles: Either
 - 1. Single connected block, or
 - 2. Sequence of blocks, just short of inducing a connected subgraph

Flow augmentation: Recursion

- Claim: At most O(k) bundles are affected by Z
 - For any other bundle W, all vertices of N[W] are in one component
- A maximal sequence of affected bundles defines a **new flow augmentation instance** (we "zoom in" on part of the graph)
- **Recursion state** (λ, k) : Progress = (increase λ) or (decrease k)

Single affected bundle

- **Disconnected** bundle:
 - Recurse independently into each component
 - Each call decreases k
- **Connected** bundle (single block):
 - **1.** Surrounding edge cut decreases k
 - **2.** No surrounding edge cut increases λ

Multiple affected bundles

- Select one cut *C_i* between bundles
- Guess assignment (s/t) for all vertices ($O(\lambda)$ many)
 - After initial cut
 - Surrounding the cut C_i
 - Before the final cut
- Recurse into both halves
- Progress:
 - Because all bundles were affected, cut budget *k* must be split two ways

- Flow Augmentation solve hard cut problems by reducing them to min-cut/max-flow instances
- Applications shown:
 - Weighted cut problems
 - Coupled Min-Cut / **Min SAT(Γ**) trichotomy
- Is there directed flow augmentation?