Solving hard cut problems via flow augmentation

Joint work with Eunjung Kim, Stefan Kratsch, Marcin Pilipczuk
Warwick, 27 October 2020
Overview

1. Flow augmentation
2. Application: Min CSP characterization
3. Application: Coupled Min-Cut
Cut problems

• Tractable...
 - \textsc{Min \((S,T)\)-Cut}

• ...and intractable
 - \textsc{Multiway Cut} – separate at least 3 terminals from each other
 - \textsc{Multicut} – fulfil arbitrary set of cut requests \((s_i, t_i)\)
 - \textsc{Bisection} – find a min-cut with \(n/2\) vertices per side
 - ...
A parameterized problem is a problem where every input is given with a parameter k (e.g., solution size). A problem is **Fixed-Parameter Tractable (FPT)** parameterized by k if instances (for some function $f(k)$) can be solved in time $f(k) \cdot n^{O(1)}$. The contrast (intractable) is running times like n^k or 2^n.
FPT algorithms for cut problems

- **MULTIWAY CUT**: $2^{O(k)} \cdot O(m)$ time
 - Marx [06]; Iwata, Oka, Yoshida [14]; Iwata, Yamaguchi [18] – various methods

- **MULTICUT**: $2^{poly(k)} \cdot n^{O(1)}$ time

- **Frameworks** for cut problems
 - *Treewidth reduction* [Marx, O’Sullivan, Razgon 13]
 - *Complete graph decomposition* [CLPPS 14/19; CKLPPSW 20+]
Our sample problems

1. **BI-OBJECTIVE (s,t)-CUT**
 - Given $G = (V, E)$, vertices s, t, integers k, W
 - Find (s, t)-cut $Z \subseteq E$ such that
 1. $|Z| \leq k$
 2. $w(Z) \leq W$ (according to edge weights $w(e)$)

2. **COUPLED MIN-CUT** (defined later)
Bi-Objective \((s,t)\)-Cut

- NP-hard in general [Papadimitriou, Yannakakis 01]
- Tractable if solution is min-cut:
 - Set new edge weights \(w'(e) = w(e) + W\)
 - Compute \((s,t)\)-min cut with weights \(w'\)
 - Cut budget \(kW + W\)
- Reduction fails if \(\lambda_G(s, t) < k\)
Given \(G = (V, E) \) with unknown minimal \((s, t)\)-cut \(Z \subseteq E \), and parameter \(k=|Z| \), we can compute augmented graph \(G' = G + A \) such that

1. Construction of \(G' \) takes \(k^{O(1)} \cdot O(m) \) time
2. With probability at least one in \(2^{O(k \log k)} \), \(Z \) is \((s,t)\)-min cut in \(G' \)
Bi-objective \((s,t)\)-cut

• FPT algorithm for Bi-objective \((s,t)\)-cut:

 \[\text{Time } 2^{O(k \log k)} \cdot O(m \log n)\]

 1. Repeat \(2^{\Theta(k \log k)}\) times:
 - Compute augmentation \(G'=G+A\) with target flow \(\lambda_{G+A}(s, t) = k\)
 - Solve problem as if \(Z\) is min-cut in \(G'\)

 2. Return cheapest solution found

This is a toy problem – but this is a competitive running time
Results overview
Min SAT(Γ') trichotomy

Flow Augmentation

Coupled Min-Cut FPT algorithm
Min SAT problem family

Min SAT(Γ) with constraint language Γ:

• **Input:** Formula $F = R_1(X_1) \land R_2(X_2) \land \cdots$ of constraints $R_i \in \Gamma$; integer k
• **Question:** Is there an assignment to F with at most k false constraints $R_i(X_i)$?

Examples:
• **Undirected (s, t)-Cut:** Language $\Gamma = \{0, 1, (x = y)\}$:
 • $F = (s = 1) \land (s = v_1) \land (v_1 = v_2) \land \cdots \land (t = 0)$
• **Edge Bipartization:** Language $\Gamma = \{(x \neq y)\}$
• **Almost 2-SAT:** Language $\Gamma = \{(x \lor y), (x \lor \overline{y}), (\overline{x} \lor \overline{y})\}$
• **ℓ-Chain SAT:** $\Gamma = \{0, 1, (x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_\ell)\}$
For every Boolean language Γ, one of the following holds:

1. $\text{Min SAT}(\Gamma)$ is FPT (using flow augmentation)
2. $\text{Min SAT}(\Gamma)$ is $\text{W}[1]$-hard
3. $\text{Min SAT}(\Gamma)$ encompasses directed cut problems (such as ℓ-Chain SAT)

Define two relations:

- $R_4(a, b, c, d) \equiv (a = b) \land (c = d) \land (\overline{a} \lor \overline{c})$
- $R_{\text{hard}}(a, b, c, d) \equiv (a = b) \land (c = d)$

Then:

- $\text{Min SAT}(\Gamma)$ with $\Gamma = \{0, 1, R_4\}$ defines Coupled Min-Cut and is FPT
- $\text{Min SAT}(\Gamma)$ with $\Gamma = \{0, 1, R_{\text{hard}}\}$ is $\text{W}[1]$-hard (double equality)
Min SAT cases – further details

Min SAT\((\Gamma)\) falls into one of the following cases (up to duality):

1. Reduces to relation \((a = 0) \land (b = 1) \land (c \neq d)\)\footnote{[EDGE BIPARTIZATION]}

2. Reduces to \((a = 1) \land (c = d)\) and \((\bar{x}_1 \lor \cdots \lor \bar{x}_d)\)\footnote{[GRAPH PAIR CUT, etc.]}

3. Generalized Coupled Min-Cut (GCMC)

4. W[1]-hard

5. Implements directed graph cut problems

Cases 1-3 FPT, cases 1-2 use standard methods.
Graph formulation:
- Graph $G = (V, E)$, vertices s, t, budget bound k
- Looking for (s, t)-cut Z of cost at most k
- Edges of E are grouped into pairs (e, f) where
 1. Edges e, f can be cut simultaneously at cost 1, but
 2. if edges e, f not cut then at most one edge is on the s-side of the cut
Coupled Min-Cut properties

• NP-hard in general
• Tractable (FPT) if Z is min-cut
• $\text{EDGE MULTICUT} \leq_{FPT} \text{COUPLED MIN-CUT}$
• Impervious (?) to previous methods
 - Important separators, shadow removal, decomposition methods don’t apply
 - LP duality???
Flow Augmentation overview
Flow Augmentation

- Graph $G = (V, E)$, vertices s, t, target flow k
- Unknown minimal (s, t)-cut Z, $|Z| = k$

Task:
- Add edges A to G so that Z is (s, t)-min cut in $G + A$
Flow Augmentation observations

1. $G - Z$ partitions into two components H_s, H_t

2. Adding (u, v) to A forbidden if and only if $u \in H_s, v \in H_t$

3. Suffices to:

 a. Add edges to A increasing (s, t)-max-flow, such that

 b. No such edge is forbidden
A strategy

- Trace “all” min-cuts from s to t
- Guess how Z interacts with each one
- Add augmenting edges consistent with the guess

Reasons it could work:
- If a cut C is entirely in H_s (or H_t), there are no bad guesses
- If we can control “mixed” cuts C intersecting both components, there may be only $f(k)$ places where we need to guess correctly
Sequences of min-cuts

- Sequence of closest disjoint min-cuts C_1, C_2, \ldots
- **Blocks** V_i: Sets of vertices between C_i's
- **Bundles**: Either
 1. Single connected block, or
 2. Sequence of blocks, just short of inducing a connected subgraph
• **Claim:** At most $O(k)$ bundles are affected by Z
 - For any other bundle W, all vertices of $N[W]$ are in one component

• A maximal sequence of affected bundles defines a **new flow augmentation instance** (we “zoom in” on part of the graph)

• **Recursion state** (λ, k): Progress = (increase λ) or (decrease k)
Single affected bundle

- **Disconnected bundle:**
 - Recurse independently into each component
 - Each call decreases k

- **Connected bundle (single block):**
 1. **Surrounding edge cut** – decreases k
 2. **No surrounding edge cut** – increases λ
Multiple affected bundles

- Select one cut C_i between bundles
- Guess assignment (s/t) for all vertices ($O(\lambda)$ many)
 - After initial cut
 - Surrounding the cut C_i
 - Before the final cut
- Recurse into both halves
- Progress:
 - Because all bundles were affected, cut budget k must be split two ways
Summary

• **Flow Augmentation** – solve hard cut problems by reducing them to \textit{min-cut/max-flow} instances

• Applications shown:
 • Weighted cut problems
 • Coupled Min-Cut / \textit{Min SAT}(\Gamma) trichotomy

• Is there \textit{directed flow augmentation}?