Edit Distance in Near Linear Time: $O(1)$ factor

Alex Andoni
Negev Shekel Nosatzki

(Columbia University)

Edit distance (Levenstein)

- Strings $x, y \in \Sigma^n$
- $ed_n(x, y) = \text{minimum number of insertions/deletions/substitutions to transform } x \text{ into } y$

$ed_n(\text{banana}, \text{ananas}) = 2$

Applications:
- bioinformatics
- natural language processing
Crucially: A classic dynamic programming

- Computing $ed_n(x, y)$:
 - $O(n^2)$ time [Wagner-Fischer’74]

\[
D(i, j) = \begin{cases}
 ed(x[1:i], y[1:j]), & \text{if } x[i] = y[j] \\
 \min \left\{ D(i - 1, j) + 1, D(i, j - 1) + 1 \right\}, & \text{otherwise}
\end{cases}
\]
Faster Algorithms?

- **Computing** $ed_n(x, y)$:
 - $O(n^2)$ time [Wagner-Fischer’74]
 - $O(n^2 / \log^2 n)$ [MP’80]
 - Better in special cases (small ed, average case, smoothed, etc): [U83, LV85, M86, GG88, GP89, UW90, CL90, CH98, LMS98, U85, CL92, N99, CPS V00, MS00, CM02, BCF08, AK08, K’19…]
 - FGC: $n^{2-o(1)}$ likely best possible!
 - assuming Strong Exponential Time Hypothesis [BI’15, AHWW’16,…]

- **Approximation in near-linear time?**
 - $\log^{1/\epsilon} n$ factor in $n^{1+O(\epsilon)}$ time [BEKMRRS’03, BJKK’04, BES’06, AO’09, AKO’10]
 - $O(1)$ factor in $O(n^{1.781})$ quantum time [BEGHS’18]
 - $O(1)$ factor in $O(n^{1.618})$ time [CDGKS’18]
 - $O_\epsilon(1)$ factor & $\pm n^{1-f(\epsilon)}$ additive in $O(n^{1+\epsilon})$ time [KS’20, BR’20]
Main result

Can compute $ed(x, y)$ with $O_\epsilon(1)$ approx. in $n^{1+\epsilon}$ time

- Approach setup:
 - $ed_n(x, y) \iff$ an optimal alignment $\pi: [n] \to [n] \cup \{\bot\}$
 - X_i, Y_j: substrings starting at i/j of length w (think $w = n^{1-\delta}$)
 - Then $\sum_i \frac{ed_w(X_i, Y_{\pi(i)})}{w} \approx ed_n(x, y)$

Goal: find near-optimal matching π between X_i’s and Y_j’s, using calls to $ed_w(X_i, Y_j)$ (possibly recursive)
Past approaches

Goal: find near-optimal matching π between X_i’s and Y_j’s, using calls to $ed_w(X_i, Y_j)$

Why should help? [BEGHS’18, CDGKS’18]

- Naive compute-all: n^2 calls to ed_w => time n^2w^2
 - Finding actual π: $(n/w)^{O(1)}$ time (~standard DP)
- Idea 0: enough to consider i be multiple of w
 - Issue: $j = \pi(i)$ may not be w-multiple
 - Can round j to δw, at the cost of additive δn error
 - Reduces to $\approx (n/w)^2$ calls => time $\approx n^2$

X_i: interval of length w

Goal: find near-optimal matching π between X_i’s and Y_j’s, using calls to $ed_w(X_i, Y_j)$

Why should help? [BEGHS’18, CDGKS’18]

- Naive compute-all: n^2 calls to ed_w => time n^2w^2
 - Finding actual π: $(n/w)^{O(1)}$ time (~standard DP)
- Idea 0: enough to consider i be multiple of w
 - Issue: $j = \pi(i)$ may not be w-multiple
 - Can round j to δw, at the cost of additive δn error
 - Reduces to $\approx (n/w)^2$ calls => time $\approx n^2$
Reducing # of calls to $ed_w(X_i, Y_j)$

Goal: find near-optimal matching π between X_i’s and Y_j’s, using calls to $ed_w(X_i, Y_j)$

- **Idea 1:** use triangle inequality to deduce $ed_w(X_i, Y_j)$
 - If X_i is “close” to $X_{i_1}, \ldots X_{i_m}$ and Y_j “close” to $Y_{j_1}, \ldots Y_{j_m}$ => so are all of them, up to factor 2
 - Reduces # of ed_w computations from m^2 to $\sim 2m$ (if ideal)!

- **Idea 2:** for $\pi(iw) = j$, most likely $\pi((i + 1)w) \approx j + w$

 + Idea 1,2 [CDGKS’18]: $(n/w)^{1.5}$ computations of ed_w!
 - Total time: $(n/w)^{1.5} \cdot w^2 + (n/w)^{O(1)}$

 + [KS’20, BR’20]: $(n/w)^{1+\epsilon}$ computations of ed_w
 - Extra $n^{1-f(\epsilon)}$ error term
 - E.g., allows to ignore a $n^{-f(\epsilon)}$ fraction of matches $X_i, Y_{\pi(i)}$

Or $\sim w^{1.5}$ if recursing on ed_w
Our high-level approach

- For each $w = 1, n^\varepsilon, n^{2\varepsilon}, ... n$,
- build a **distance oracle** D_w for the metric $(\mathcal{I}_w, ed_w(\cdot;\cdot))$ where $\mathcal{I}_w = \text{all } 2n$ substrings of length w

Oracle D_w: for $I, J \in \mathcal{I}_w$

- $ed_w(I, J) \leq D_w(I, J)$
- $D_w(I, J) \preceq ed_w(I, J)$ where it “matters”
- $D_w(I, J)$ call takes $O^*(1)$ time

New goal: given D_w/n^ε, compute D_w, in $n^{1+O(\varepsilon)}$ time
2 components:

1. Alignment algo: oracle \(al_w(I, J) \)
2. Matching algo: building \(D_w \) from \(al_w \)

Distance \(G_w \) (shortest path): for \(I, J \in \mathcal{I}_w \)
- \(ed_w(I, J) \leq G_w(I, J) \)
- \(G_w(I, J) \simeq al_w(I, J) \) where it "matters"

\(ed_w(I, J) \leq al_w(I, J) \simeq ed_w(I, J) \) \(al_w(I, J) \) uses \(O^*(1) \) time & \(D_w/n^\epsilon \) calls

Any distance oracle OK, as long as metric output

E.g., [Thorup-Zwick’05] not metric output
But [Matousek’96]: embed into \(\ell^d_\infty \) where \(d = n^\epsilon = O^*(1) \) for approximation \(O(1/\epsilon) \)
Matching Algorithm

- Enough to build graph G for **one scale** c:
 - Edge (I, J) implies $al(I, J) \leq O_\epsilon(c)$
 - For any alignment π, for $i \in [n]$:
 - If $al(X_i, Y_{\pi(i)}) \leq c$, there is a 2-hop path in G
 - Can miss G if there \leq number of pairs where $al(X_i, Y_{\pi(i)}) > c$
 - O^* time and calls to al

Perfect Neighborhood Assumption:
- Either $al(I, J) \leq c$
- Or $al(I, J) \gg c$

I.e., \mathcal{X}_W composed of equivalence classes

BIG simplification…

Instead of triangle inequality
Main loop

1. Iteratively partition \(\mathcal{S}_W \) into finer parts
 - In step \(t = 1 \ldots 1/\epsilon \), produce \(\Pi_t \)
 - \(\approx \lambda^t \) parts of size \(\approx n/\lambda^t \), for \(\lambda = n^\epsilon \)

2. Construction in step \(t \)
 - Sample \(\lambda^t \) anchors \(\in \mathcal{S}_W \) (each will produce a part in \(\Pi_t \))
 - For each anchor \(A \), compare to all in \(\Pi_{t-1}(A) \) using \(al \) oracle
 - Obtain set \(E(A) \) : all “equivalent” substrings (at distance \(\leq c \))
 - Each such \(I \in E \) is given credit \(\phi_A(I) = \frac{n/\lambda^t}{|E(A)|} \)

Fix part \(P \in \Pi_{t-1} \):
- Size \(\lambda \cdot n/\lambda^t \)
- About \(\lambda \) anchors inside
- Each should capture \(n/\lambda^t \)
Partition via proximity

- **Proximal extension** of $I \in E(A)$:
 - Distribute $\phi_A(I)$ to “nearby” J’s
 - R intervals $J \in P_{t-1}(I)$ to left/right
 - Defines $\psi_A(J)$

- **New partition** Π_t of \mathcal{W}:
 - Consider vectors $\psi(J) \in \mathbb{R}_+^{\lambda_t}$
 - Partition using (weighted) minhash $h: 2^{[\lambda_t]} \rightarrow [\lambda_t]$:
 - J assigned to part $h(\psi(J))$
 - $\Pr[X_i$ and $Y_{\pi(i)}$ separated] $\approx ||\psi(X_i) - \psi(Y_{\pi(i)})||_1 \approx “local\ error”$

Repeat for $R = n^{\varepsilon l}$, for $l = 1$...

Each level l “takes care” of intervals I of density $E(I) \approx \Theta^* \left(\frac{n/\lambda^l}{n^{\varepsilon l}} \right)$

Use *thresholded* $\psi_A(J)$: zeroed-out if too small (to ensure no big parts)

Remove partitioned intervals from subsequent levels
A sample of the rest

- **Beyond “Perfect Neighborhood Assumption”:**
 - **Challenge:** can’t use usual ideas to reduce to PNA
 - E.g., if choose a random cut-off point c:
 - constant probability to separate X_i from $Y_{\pi(i)}$ => like $ed \approx n$
 - Or FRT-like metric decomposition: \Pr pair together $\approx n^{-\epsilon}$ not enough
 - Need a “for all” guarantee instead of “for each”
 1. **Smooth out everything:** “matching quantities” => up to $n^{O(\epsilon)}$
 - Eg, use *fractional* partitions (colorings): interval (logically) split b/w “parts”
 - New challenges to keep palettes sufficiently sparse
 2. Replace Jaccard (w-minhash) with “distortion resilient ℓ_1”:
 - $dd_F(p, q) = \sum_i p_i \cdot \mathbb{I}[p_i > F \cdot q_i]$ for $F = n^{O(\epsilon)}$

- **Alignment Algorithm al_w:**
 - **Challenge 1:** D_{w/n^ϵ} arbitrary metric
 - **Challenge 2:** output of al_w needs to be a metric

Perfect Neighborhood Assumption:
- Either $al(I,J) \leq c$
- Or $al(I,J) \gg c$
Finale

Can compute \(ed(x, y) \) with \(O_\epsilon(1) \) approx. in \(n^{1+\epsilon} \) time

- Approximation \(\sim \) doubly-exponential in \(1/\epsilon \)

Open questions:

- \(\text{poly}(1/\epsilon) \) approximation?
 - Natural because using “dimension reduction” methods for metrics, where standard to have \(2/\epsilon \) approx. vs \(n^\epsilon \) dimension

- Best runtime for \(3 + \epsilon \) approximation?
 - E.g., \(\approx n^{1.5} \) natural: bottleneck is dynamic programming on substrings
 - Current best: \(\approx n^{1.6} \) \([\text{A’18, RSSS’19, GRS’20}]\)

- \(< 3 \) approximation (beyond triangle ineq)? \([\text{RSSS’19}]\)

- Many other edit distance problems:
 - Text indexing \([\text{CDK’19, A’18}]\), embedding/cutting modulus/NNS