Edit Distance in Near Linear Time: O(1) factor

Alex Andoni Negev Shekel Nosatzki

(Columbia University)

https://arxiv.org/abs/2005.07678

Edit distance (Levenstein)

- Strings $x, y \in \Sigma^n$
- $ed_n(x, y)$ = minimum number of insertions/deletions/ substitutions to transform x into y

$$ed_n($$
, $) = 2$

Applications:

- bioinformatics
- natural language processing

Crucially: A classic dynamic programming

- Computing $ed_n(x, y)$:
 - $O(n^2)$ time [Wagner-Fischer'74]

Faster Algorithms?

- Computing $ed_n(x, y)$:
 - $O(n^2)$ time [Wagner-Fischer'74]
 - $O(n^2/\log^2 n)$ [MP'80]
 - Better in special cases (small *ed*, average case, smoothed, etc): [U83,LV85,M86,GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPS V00,MS00,CM02,BCF08,AK08,K'19...]
 - FGC: $n^{2-o(1)}$ likely best possible!
 - assuming Strong Exponential Time Hypothesis [BI'15, AHWW'16,...]
- Approximation in near-linear time?
 - ▶ $\log^{1/\epsilon} n$ factor in $n^{1+O(\epsilon)}$ time [BEKMRRS'03, BJKK'04, BES'06, AO'09, AKO'10]
 - O(1) factor in $O(n^{1.781})$ quantum time [BEGHS'18]
 - O(1) factor in $O(n^{1.618})$ time [CDGKS'18]
 - $O_{\epsilon}(1)$ factor & $\pm n^{1-f(\epsilon)}$ additive in $O(n^{1+\epsilon})$ time [KS'20, BR'20]

Main result

Can compute ed(x, y) with $O_{\epsilon}(1)$ approx. in $n^{1+\epsilon}$ time

Approach setup:

- ▶ $ed_n(x, y) \Leftrightarrow$ an optimal alignment $\pi: [n] \to [n] \cup \{\bot\}$
- X_i, Y_j : substrings starting at i/j of length w (think $w = n^{1-\delta}$)

• Then
$$\sum_{i} \frac{ed_w(X_i, Y_{\pi(i)})}{w} \approx ed_n(x, y)$$

Goal: find near-optimal matching π between X_i 's and Y_j 's, using calls to $ed_w(X_i, Y_j)$ (possibly recursive)

Past approaches

Goal: find near-optimal matching π between X_i 's and Y_j 's, using calls to $ed_w(X_i, Y_j)$ X_i : interval of

Why should help? [BEGHS'18, CDGKS'18]

- Naive compute-all: n^2 calls to $ed_w =>$ time n^2w^2
 - Finding actual $\pi: (n/w)^{O(1)}$ time (~standard DP)
- Idea 0: enough to consider i be multiple of w
 - Issue: $j = \pi(i)$ may not be *w*-multiple
 - Can round *j* to δw , at the cost of additive δn error

length w

Reducing # of calls to $ed_w(X_i, Y_j)$

Goal: find near-optimal matching π between X_i 's and Y_j 's, using calls to $ed_w(X_i, Y_j)$

- Idea I: use triangle inequality to deduce $ed_w(X_i, Y_j)$
 - If X_i is "close" to X_{i_1} , ... X_{i_m} and Y_j "close" to Y_{j_1} , ... $Y_{j_m} =>$ so are all of them, up to factor 2
 - Reduces # of ed_w computations from m^2 to $\sim 2m$ (if ideal) !
- Idea 2: for $\pi(iw) = j$, most likely $\pi((i+1)w) \approx j + w$
- +Idea I,2 [CDGKS'18]: $(n/w)^{1.5}$ computations of $ed_w!$
 - Total time: $(n/w)^{1.5} \cdot w^2 + (n/w)^{0(1)}$
- ▶ [KS'20, BR'20]: (n/w)^{1+ϵ} computations of ed_w
 ▶ Extra n^{1-f(ϵ)} error term

Or $\sim w^{1.5}$ if recursing on ed_w

• E.g., allows to ignore a $n^{-f(\epsilon)}$ fraction of matches X_i , $Y_{\pi(i)}$

Our high-level approach

For each $w = 1, n^{\epsilon}, n^{2\epsilon}, \dots n$,

build a distance oracle D_w for the metric $(\mathfrak{T}_w, ed_w(\cdot, \cdot))$ where $\mathfrak{T}_w = \text{all } 2n$ substrings of length w

New goal: given $D_{w/n^{\epsilon}}$, compute D_w , in $n^{1+O(\epsilon)}$ time

Main loop

1. Iteratively partition \mathfrak{T}_w into finer parts

- In step $t = 1 \dots 1/\epsilon$, produce Π_t
- $\approx \lambda^t$ parts of size $\approx n/\lambda^t$, for $\lambda = n^\epsilon$
- Construction in step t

```
Fix part P \in \Pi_{t-1}:
```

• Size
$$\lambda \cdot n/\lambda^t$$

- About λ anchors inside
- Each should capture n/λ^t
- Sample λ^t anchors $\in \mathfrak{T}_W$ (each will produce a part in Π_t)
- For each anchor A, compare to all in $\Pi_{t-1}(A)$ using al oracle
- Obtain set E(A) : all "equivalent" substrings (at distance $\leq c$)
- Each such $I \in E$ is given credit $\phi_A(I) = \frac{n/\lambda^t}{|E(A)|}$

Use thresholded $\psi_A(J)$: zeroed-out if too small (to ensure no big parts) Remove partitioned intervals from subsequent levels

A sample of the rest

Perfect Neighborhood Assumption:

- Either $al(I,J) \leq c$
- Or $al(I,J) \gg c$
- Beyond "Perfect Neighborhood Assumption":
 - Challenge: can't use usual ideas to reduce to PNA
 - E.g., if choose a random cut-off point *c*: constant probability to separate X_i from $Y_{\pi(i)} =$ like $ed \approx n$
 - Or FRT-like metric decomposition: Pr pair together $\approx n^{-\epsilon}$ not enough
 - Need a "for all" guarantee instead of "for each"
 - 1. Smooth out everything: "matching quantities" => up to $n^{O(\epsilon)}$
 - Eg, use *fractional* partitions (colorings): interval (logically) split b/w "parts"
 - New challenges to keep palettes sufficiently sparse
 - 2. Replace Jaccard (w-minhash) with "distortion resilient ℓ_1 ":
 - $dd_F(p,q) = \sum_i p_i \cdot \mathbb{I}[p_i > F \cdot q_i]$ for $F = n^{O(\epsilon)}$
- Alignment Algorithm al_w :
 - Challenge I: $D_{w/n^{\epsilon}}$ arbitrary metric
 - Challenge 2: output of al_w needs to be a metric

 $D_{w/n^{\epsilon}}$

 $al_w(I,J)$ uses $O^*(1)$ time and $D_{w/n^{\epsilon}}$ calls

Finale

Can compute ed(x, y) with $O_{\epsilon}(1)$ approx. in $n^{1+\epsilon}$ time

- Approximation ~doubly-exponential in $1/\epsilon$
- Open questions:
 - $poly(1/\epsilon)$ approximation?
 - Natural because using "dimension reduction" methods for metrics, where standard to have $2/\epsilon$ approx. vs n^{ϵ} dimension
 - Best runtime for $3 + \epsilon$ approximation?
 - E.g., $\approx n^{1.5}$ natural: bottleneck is dynamic programming on substrings
 - Current best: $\approx n^{1.6}$ [A'18, RSSS'19, GRS'20]
 - < 3 approximation (beyond triangle ineq)? [RSSS'19]</p>
 - Many other edit distance problems:
 - Text indexing [CDK'19, A'18], embedding/cutting modulus/NNS