Generating sets for powers of finite algebras and the complexity of quantified constraints

Barnaby Martin

Algorithms and Complexity Group, Durham University, UK

DIMAP Seminar, Warwick, 12th May 2020

Let us study the growth rate of generating sets for direct powers of an algebra $\mathbb{A}.$

For \mathbb{A} we have a function $f_{\mathbb{A}}: \mathbb{N} \to \mathbb{N}$, giving the cardinality of the minimal generating sets of the sequence

- $\mathbb{A}, \mathbb{A}^2, \mathbb{A}^3, \dots$ as
- *f*(1), *f*(2), *f*(3),

We say \mathbb{A} has the XGP with:

(PGP) polynomial, when $f_{\mathbb{A}} = O(i^c)$, for some c; and (EGP) exponential, when exists b so that $f_{\mathbb{A}} = \Omega(b^i)$.

History

Theorem (Wiegold 1987)

Let \mathbb{B} be a finite semigroup. If \mathbb{B} is a monoid then \mathbb{B} has the (linear) PGP. Otherwise, \mathbb{B} has the EGP.

Proof of PGP.

If \mathbb{B} is a monoid with identity 1 and |B| = n, then

$$(B, 1, \dots, 1, 1)$$

 $(1, B, \dots, 1, 1)$
 \vdots
 $(1, 1, \dots, B, 1)$
 $(1, 1, \dots, 1, B)$

is a generating set for \mathbb{B}^m of size *mn*.

Theorem (Wiegold 1987)

Let \mathbb{B} be a finite semigroup. If \mathbb{B} is a monoid then \mathbb{B} has the (linear) PGP. Otherwise, \mathbb{B} has the EGP.

Proof of EGP.

Otherwise, without an identity, \mathbb{B} and \mathbb{B}^m have the properties that

$$|x \cdot B| \le n-1$$
, for each $x \in B$.
 $|z \cdot B^m| \le (n-1)^m$, for each $z \in B^m$

Thus, a subset of B^m of size r can generate no more $r + r(n-1)^m$ elements in \mathbb{B}^m . Thus, a generating set must be of size $\geq \left(\frac{2n}{2n-1}\right)^m$.

Constraint Satisfaction Problems

The *constraint satisfaction problem* (CSP) is a popular formalism in Artificial Intelligence in which one is given

• a triple (V, D, \mathcal{C}) of variables, domain, constraints

and in which one asks for an assignment of the variables to the domain that satisfies the constraints.

A popular parameterisation involves fixing D and restricting

• the constraint language C.

This can be formulated combinatorially as CSP(C) with

- Input: a structure A.
- Question: does A have a homomorphism to C?

or logically as $CSP(\mathcal{C})$ with

- Input: a sentence ϕ of $\{\exists, \land, =\}$ -FO.
- Question: does $\mathfrak{C} \models \phi$?

Example

 $CSP(\mathcal{K}_3)$, or $CSP(\{r, g, b\}; \neq)$, is *Graph 3-colourability*.

Combinatorially, one looks for a homomorphism from C_5 to \mathcal{K}_3 . Logically, one asks if $\mathcal{K}_3 \models \Phi$.

$$\Phi := \exists v_1, v_2, v_3, v_4, v_5 \quad E(v_1, v_2) \land E(v_2, v_1) \land E(v_2, v_3) \land E(v_3, v_2) \\ E(v_3, v_4) \land E(v_4, v_3) \land E(v_4, v_5) \\ E(v_5, v_4) \land E(v_5, v_1) \land E(v_1, v_5).$$

DANGE

イロト イヨト イヨト

Quantified Constraint Satisfaction

The quantified constraint satisfaction problem QCSP(B) has

- Input: a sentence ϕ of $\{\forall, \exists, \land, =\}$ -FO.
- Question: does $\mathcal{B} \models \phi$?

It is the CSP with \forall returned.

"The QCSP might be thought of as the dissolute younger brother of its better-studied restriction, the CSP. ... CSPs are ubiquitous in CS ..., while QCSPs can not nearly claim to be so important in applications."

useful QCSPs	classified?
relativised ($\forall x \in X$, $\exists y \in Y$)	
Boolean (QBF or QSAT)	

"... what is left of the true non-Boolean QCSP is a problem I believe to be mostly of interest to theorists."

(日) (四) (日) (日) (日)

Complexity of Model Checking

Fragment	Dual	Classification?	
$\{\exists, \lor\}$	$\{\forall, \wedge\}$		
$\{\exists, \lor, =\}$	$\{\forall, \land, \neq\}$	Logspace	
$\{\exists, \lor, \neq\}$	$\{\forall,\wedge,=\}$		
$\{\exists, \land, \lor\}$	$\{\forall, \land, \lor\}$	Logspace if there is some element a s.t. all relations are	
$\{\exists, \land, \lor, =\}$	$\{\forall, \land, \lor, \neq\}$	a-valid, and NP-complete otherwise	
$\{\exists, \land, \lor, \neq\}$	$\{\forall, \land, \lor, =\}$		
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP dichotomy conjecture: P or NP-complete	
$\{\exists, \land, =\}$	$\{\forall, \lor, \neq\}$		
$\{\exists, \land, \neq\}$	$\{\forall, \lor, =\}$	NP-complete for $ \mathcal{D} \geq$ 3, reduces to Schaefer classes other-	
		wise.	
$ \{ \exists, \forall, \land \} \\ \{ \exists, \forall, \land, = \} $	$ \begin{array}{l} \{\exists,\forall,\vee\} \\ \{\exists,\forall,\vee,\neq\} \end{array} $	QCSP polychotomy: P, NP-complete, or Pspace-complete ?	
$\{\exists, \forall, \land, \neq\}$	$\{\exists, \forall, \lor, =\}$	Pspace-complete for $ \mathcal{D} \geq 3$, reduces to Schaefer classes for	
		Quantified Sat otherwise.	
{∀,∃	$\exists, \land, \lor\}$	Tetrachotomy: P, NP-complete, co-NP-complete or Pspace- complete	
$ \begin{array}{c} \{\forall,\exists,\wedge,\vee,=\\ \{\neg,\exists,\forall \end{array}$	$ \begin{array}{l} \{\forall, \exists, \land, \lor, \neq\} \\ \forall, \land, \lor, =\} \end{array} $	Logspace when $ {\mathfrak D} \leq 1$, Pspace-complete otherwise	
$\{\neg, \exists, \forall, \land, \lor\}$ Logspace when \mathcal{D} contains only empty or full		Logspace when ${\mathfrak D}$ contains only empty or full relations,	
		Pspace-complete otherwise	

First-order structures

Relational structures:

$$\mathcal{B}:=(B;R_1,R_2,\ldots)$$

Functional structures:

 $\mathbb{B}:=(D;f_1,f_2,\ldots)$

functional structures = algebras.

What is the interplay between relational and functional structures?

Model Theory = Logic + Universal Algebra

All our structures are finite-domain.

Interplay

Let R be an m-ary relation on \mathcal{B} . We say that a k-ary operation $f: B^k \to B$ preserves R (or R is invariant) under f if:

where each $y_i = f(x_{1i}, x_{2i}, ..., x_{ki})$.

- operations that preserve each of the relations of \mathcal{B} are $\mathsf{Pol}(\mathcal{B})$
- relations invariant under each operation of \mathbb{B} are $Inv(\mathbb{B})$.

人口 医水黄 医水黄 医水黄素 化甘油

one-side of a Galois Correspondence

Let \mathcal{B} and \mathbb{B} be over the same finite domain B.

$$\begin{aligned} &\operatorname{Inv}(\operatorname{Pol}(\mathcal{B})) = \langle \mathcal{B} \rangle_{\{\exists, \land, =\}} \\ &\operatorname{Inv}(\operatorname{surPol}(\mathcal{B})) = \langle \mathcal{B} \rangle_{\{\forall, \exists, \land, =\}} \end{aligned}$$

Idempotent operations are surjective! The algebraic definition for $\mathsf{QCSP}(\mathbb{B})$ has

- Input: a sentence ϕ of $\{\forall, \exists, \land\}$ -FO with some relations $\mathcal{B} \in Inv(\mathbb{B})$.
- Question: does $\mathcal{B} \models \phi$?

What if $Inv(\mathbb{B})$ is infinite?

* Infinite languages on a finite domain *

Each relation R can be given as a list of tuples, but this is far too lengthy! How about a Boolean formula ϕ in atoms

• v = v' and v = c,

where c is a domain element. The problem is that recognising, e.g., non-emptiness of the relation can be NP-hard! Following others, e.g. [Bodirsky & Dalmau 2006] we will ask for

• ϕ in DNF,

However, our main result will be a separation NP versus co-NP-hard, so this is not a big deal!

Infinite languages on a finite domain

Example 1.

Example 2.

$$\{ \begin{array}{ccc} (1,0,0), & (0,1,0), & (0,0,1), \\ (1,1,0), & (1,0,1), & (1,1,0), \end{array} \} \quad (x \neq y \lor y \neq z)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Back to PGP

Call an algebra \mathbb{B} k-PGP-switchable if \mathbb{B}^m is generated from the set of *m*-tuples of the form

• $(x_1, \ldots, x_1, x_2, \ldots, x_2, \ldots, x_{k'}, \ldots, x_{k'})$ for some $k' \leq k$. switchability were originally introduced in connection with the QCSP by Hubie Chen!

Theorem (Chen 2008)

If \mathbb{A} is switchable then $QCSP(\mathbb{A})$ is in NP.

Theorem (LICS 2015)

A is PGP-switchable iff it is switchable.

A number of handsome people worked on the PGP-EGP dichotomy conjecture.

Conjecture

Let \mathbb{B} be a finite idempotent algebra, then either \mathbb{B} has PGP or it has EGP.

In 2015, Dmitriy Zhuk solved it.

Theorem (Zhuk 2015)

Let \mathbb{B} be a finite algebra, then either \mathbb{B} is PGP-switchable or it has EGP.

In order to prove this result, Zhuk assumes \mathbb{B} is not PGP-switchable and finds the existence of a certain class of relations in $Inv(\mathbb{B})$.

(日本)(同本)(日本)(日本)(日本)

- H. Chen: Quantified constraint satisfaction and the polynomially generated powers property. ICALP 2008.
- D. Zhuk: The Size of Generating Sets of Powers. Arxiv 2015

DANGE

- H. Chen: Quantified constraint satisfaction and the polynomially generated powers property. ICALP 2008.
- D. Zhuk: The Size of Generating Sets of Powers. Arxiv 2015
- C. Carvalho, F. Madelaine, B. M.: *From Complexity to Algebra and Back: Digraph Classes, Collapsibility, and the PGP.* LICS 2015.

DANGER

Acid

Results

Henceforth, let \mathbb{A} be an idempotent algebra on a finite domain A.

Conjecture (Chen Conjecture 2012)

Let \mathcal{B} be a finite relational structure expanded with all constants. If $Pol(\mathcal{B})$ has PGP, then $QCSP(\mathcal{B})$ is in NP; otherwise $QCSP(\mathcal{B})$ is Pspace-complete.

Theorem (Revised Chen Conjecture)

If \mathbb{A} satisfies PGP, then $QCSP(Inv(\mathbb{A}))$ is in NP. Otherwise, if \mathbb{A} satisfies EGP, then $QCSP(Inv(\mathbb{A}))$ is co-NP-hard.

Conjecture (Alternative Chen Conjecture)

If A satisfies PGP, then for every finite reduct $\mathcal{B} \subseteq Inv(\mathbb{A})$, QCSP(\mathfrak{B}) is in NP. Otherwise, there exists a finite reduct $\mathcal{B} \subseteq Inv(\mathbb{A})$ so that QCSP(\mathfrak{B}) is co-NP-hard.

Results

Henceforth, let \mathbb{A} be an idempotent algebra on a finite domain A.

Conjecture (Chen Conjecture 2012)

Let \mathcal{B} be a finite relational structure expanded with all constants. If $Pol(\mathcal{B})$ has PGP, then $QCSP(\mathcal{B})$ is in NP; otherwise $QCSP(\mathcal{B})$ is Pspace-complete.

Theorem (Revised Chen Conjecture)

Either $QCSP(Inv(\mathbb{A}))$ is co-NP-hard or $QCSP(Inv(\mathbb{A}))$ has the same complexity as $CSP(Inv(\mathbb{A}))$.

Conjecture (Alternative Chen Conjecture False)

If A satisfies PGP, then for every finite reduct $\mathcal{B} \subseteq Inv(\mathbb{A})$, QCSP(\mathfrak{B}) is in NP. Otherwise, there exists a finite reduct $\mathcal{B} \subseteq Inv(\mathbb{A})$ so that QCSP(\mathfrak{B}) is co-NP-hard.

Tractability

We know from Zhuk 2015 that

 $PGP \longrightarrow PGP$ -switchability

and from [LICS 2015]

PGP-switchability \longrightarrow switchability

whereupon Chen 2008 gives

switchability \longrightarrow QCSP tractability.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Henceforth, α , β be strict subsets of A so that $\alpha \cup \beta = A$. Theorem (Zhuk 2015) Algebra \mathbb{A} (idempotent) has EGP iff exists such α , β with

$$\sigma_k(x_1, y_1, \ldots, x_k, y_k) := \rho(x_1, y_1) \lor \ldots \lor \rho(x_k, y_k),$$

where $\rho(x, y) = (\alpha \times \alpha) \cup (\beta \times \beta)$, is in $\text{Inv}(\mathbb{A})$, for each $k \in \mathbb{N}$. We prefer the relation $\tau_k(x_1, y_1, z_1 \dots, x_k, y_k, z_k)$ defined by

$$\tau_k(x_1,y_1,z_1\ldots,x_k,y_k,z_k) := \rho'(x_1,y_1,z_1) \vee \ldots \vee \rho'(x_k,y_k,z_k),$$

where $\rho'(x, y, z) = (\alpha \times \alpha \times \alpha) \cup (\beta \times \beta \times \beta).$

Corollary

Algebra \mathbb{A} (idempotent) has EGP iff exists such α, β with $\tau_k(x_1, y_1, z_1, \dots, x_k, y_k, z_k)$ in $\text{Inv}(\mathbb{A})$, for each $k \in \mathbb{N}$.

co-NP-hardness

Theorem If $Inv(\mathbb{A})$ satisfies EGP, then $QCSP(Inv(\mathbb{A}))$ is co-NP-hard.

Proof.

Reduce from the complement of (monotone) 3-not-all-equal-sat.

 $\exists x_1^1, x_1^2, x_1^3, \dots, \dots, x_m^1, x_m^2, x_m^3 \operatorname{NAE}(x_1^1, x_1^2, x_1^3) \land \dots \land \operatorname{NAE}(x_m^1, x_m^2, x_m^3)$

becomes

$$\forall x_1^1, x_1^2, x_1^3, \dots, \dots, x_m^1, x_m^2, x_m^3 \ \rho'(x_1^1, x_1^2, x_1^3) \lor \dots \lor \rho'(x_m^1, x_m^2, x_m^3)$$

where we note that $\tau_m(x_1, y_1, z_1 \dots, x_m, y_m, z_m) :=$

$$\rho'(x_1, y_1, z_1) \vee \ldots \vee \rho'(x_m, y_m, z_m)$$

has a DNF representation that is polynomially-sized in m.

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Recall, α, β be strict subsets of A so that $\alpha \cup \beta = A$. Now ask further that $\alpha \cap \beta \neq \emptyset$.

Corollary

 $QCSP(A; \{\tau_n : n \in \mathbb{N}\}, \{a : a \in A\})$ is co-NP-hard. In fact.

Proposition $QCSP(A; \{\tau_n : n \in \mathbb{N}\}, \{a : a \in A\})$ is in co-NP.

Proof.

Roughly speaking, evaluate all existential variables to something in $\alpha \cap \beta$. But (A; { $\tau_n : n \in \mathbb{N}$ }, { $a : a \in A$ }) is not finitely related.

Proposition

For every finite reduct \mathcal{B} of $(A; \{\tau_n : n \in \mathbb{N}\}, \{a : a \in A\})$, $QCSP(\mathcal{B})$ is in NL.

Back to * finite domains * and the Chen Conjecture

The conventional definition for $QCSP(\mathcal{B})$, where (\mathcal{B}) is a finite constraint language, is

- Input: a sentence ϕ of $\{\forall, \exists, \land\}$ -FO.
- Question: does $\mathcal{B} \models \phi$?

Conjecture (Chen Conjecture + CSP Dichotomy)

Let \mathcal{B} be a finite relational structure expanded with all constants. Either $QCSP(\mathcal{B})$ is in P, is NP-complete or is Pspace-complete.

Death of the Chen Conjecture I

Example $R_{\delta,3}$.

$$\begin{array}{ll} \{(1,\,_{-},\,_{-}), & (2,\,_{-},\,_{-}), \\ (0,0,0), & (0,1,1), & (0,2,2), \end{array} \qquad (x \neq 0 \lor y = z) \end{array}$$

Example $R_{\text{and},2}$.

$$\{ \begin{array}{ccc} (0,0,0), & (0,1,0), & (1,0,0), \\ (1,1,1), & (2,_,_), & (_,2,_), \end{array} \}$$

• $QCSP(\{0, 1, 2\}; 0, 1, 2, R_{and,2}, R_{\delta})$ is co-NP-complete.

э.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Death of the Chen Conjecture II

Example $R_{\delta,2}$.

$$\{ \begin{array}{ccc} (0,0), & (1,0), & (2,0), \\ (1,2), & (2,2) \end{array} \}$$

Example $R_{\text{and},2}$.

$$\{ \begin{array}{ccc} (0,0), & (1,0), & (2,0), \\ (1,2), & (2,2) \end{array} \}$$

- $Pol(\{0, 1, 2\}; 0, 1, 2, R_{and,2}, R_{\delta,3})$ has EGP.
- $QCSP(\{0, 1, 2\}; 0, 1, 2, R_{and,2}, R_{\delta,3})$ is in P.

э.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

QCSP Monsters

There are finite \mathcal{B} so that $QCSP(\mathcal{B})$ ranges over

- in P.
- NP-complete.
- Pspace-complete.
- co-NP-complete.
- DP-complete.
- Θ_2^P -complete.
- . . .

Theorem (Zhuk & M. 2019)

Let \mathcal{B} be a finite 3-element relational structure expanded with all constants. Either $QCSP(\mathcal{B})$ is in P, is NP-complete, is co-NP-complete or is Pspace-complete.

(日本)(同本)(日本)(日本)(日本)

Future of the Chen Conjecture

The conservative case is a natural large class on which the Chen Conjecture holds.

Theorem (Zhuk & M. 2019)

Let \mathcal{B} be a finite relational structure expanded with all unary relation. Either $QCSP(\mathcal{B})$ is in P, is NP-complete, or is Pspace-complete.

Can PGP and EGP be sensibly modified to make the Chen Conjecture "true"?

