Generating sets for powers of finite algebras and the complexity of quantified constraints

Barnaby Martin

Algorithms and Complexity Group, Durham University, UK

DIMAP Seminar, Warwick, 12th May 2020
Let us study the growth rate of generating sets for direct powers of an algebra \mathbb{A}.

For \mathbb{A} we have a function $f_\mathbb{A}: \mathbb{N} \to \mathbb{N}$, giving the cardinality of the minimal generating sets of the sequence
- \mathbb{A}, \mathbb{A}^2, \mathbb{A}^3, ... as
- $f(1)$, $f(2)$, $f(3)$, ...

We say \mathbb{A} has the XGP with:

(PGP) polynomial, when $f_\mathbb{A} = O(i^c)$, for some c; and

(EGP) exponential, when exists b so that $f_\mathbb{A} = \Omega(b^i)$.

Theorem (Wiegold 1987)

Let B be a finite semigroup. If B is a monoid then B has the (linear) PGP. Otherwise, B has the EGP.

Proof of PGP.
If B is a monoid with identity 1 and $|B| = n$, then

\[
\begin{align*}
(B, 1, \ldots, 1, 1) \\
(1, B, \ldots, 1, 1) \\
& \quad \vdots \\
(1, 1, \ldots, B, 1) \\
(1, 1, \ldots, 1, B)
\end{align*}
\]

is a generating set for B^m of size mn.
Theorem (Wiegold 1987)

Let \mathbb{B} be a finite semigroup. If \mathbb{B} is a monoid then \mathbb{B} has the (linear) PGP. Otherwise, \mathbb{B} has the EGP.

Proof of EGP.
Otherwise, without an identity, \mathbb{B} and \mathbb{B}^m have the properties that

$$|x \cdot B| \leq n - 1, \text{ for each } x \in B.$$
$$|z \cdot B^m| \leq (n - 1)^m, \text{ for each } z \in B^m.$$

Thus, a subset of B^m of size r can generate no more $r + r(n - 1)^m$ elements in \mathbb{B}^m. Thus, a generating set must be of size

$$\geq \left(\frac{2n}{2n-1} \right)^m.$$
Constraint Satisfaction Problems

The constraint satisfaction problem (CSP) is a popular formalism in Artificial Intelligence in which one is given

- a triple \((V, D, C)\) of variables, domain, constraints

and in which one asks for an assignment of the variables to the domain that satisfies the constraints.

A popular parameterisation involves fixing \(D\) and restricting

- the constraint language \(C\).

This can be formulated combinatorially as CSP(\(C\)) with

- Input: a structure \(A\).
- Question: does \(A\) have a homomorphism to \(C\)?

or logically as CSP(\(C\)) with

- Input: a sentence \(\phi\) of \(\{\exists, \land, =\}\)-FO.
- Question: does \(C \models \phi\)?
Example

CSP(\mathcal{K}_3), or CSP($\{r, g, b\}; \neq$), is \textit{Graph 3-colourability}.

Combinatorially, one looks for a homomorphism from \mathcal{C}_5 to \mathcal{K}_3. Logically, one asks if $\mathcal{K}_3 \models \Phi$.

$$\Phi := \exists v_1, v_2, v_3, v_4, v_5 \quad E(v_1, v_2) \wedge E(v_2, v_1) \wedge E(v_2, v_3) \wedge E(v_3, v_2) \wedge E(v_3, v_4) \wedge E(v_4, v_3) \wedge E(v_4, v_5) \wedge E(v_5, v_4) \wedge E(v_5, v_1) \wedge E(v_1, v_5).$$
Quantified Constraint Satisfaction

The *quantified constraint satisfaction problem* QCSP(\(\mathcal{B}\)) has

- Input: a sentence \(\phi\) of \(\{\forall, \exists, \land, =\}\)-FO.
- Question: does \(\mathcal{B} \models \phi\)?

It is the CSP with \(\forall\) returned.
“The QCSP might be thought of as the dissolute younger brother of its better-studied restriction, the CSP. . . . CSPs are ubiquitous in CS . . . , while QCSPs can not nearly claim to be so important in applications.”

<table>
<thead>
<tr>
<th>useful QCSPs</th>
<th>classified?</th>
</tr>
</thead>
<tbody>
<tr>
<td>relativised $(\forall x \in X, \exists y \in Y)$</td>
<td>√</td>
</tr>
<tr>
<td>Boolean (QBF or QSAT)</td>
<td>√</td>
</tr>
</tbody>
</table>

“...what is left of the true non-Boolean QCSP is a problem I believe to be mostly of interest to theorists.”
Complexity of Model Checking

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Dual</th>
<th>Classification?</th>
</tr>
</thead>
<tbody>
<tr>
<td>({\exists, \lor}) ({\forall, \land})</td>
<td>({\forall, \land}) ({\forall, \land, \neq}) ({\forall, \land, =})</td>
<td>Logspace</td>
</tr>
<tr>
<td>({\exists, \lor, =}) ({\forall, \land, \neq}) ({\forall, \land, =})</td>
<td>Logspace if there is some element (a) s.t. all relations are (a)-valid, and NP-complete otherwise</td>
<td></td>
</tr>
<tr>
<td>({\exists, \land, \lor}) ({\forall, \land, \lor}) ({\forall, \land, \neq}) ({\forall, \land, =})</td>
<td>Logspace if there is some element (a) s.t. all relations are (a)-valid, and NP-complete otherwise</td>
<td></td>
</tr>
<tr>
<td>({\exists, \land, =}) ({\forall, \lor}) ({\forall, \land, \neq})</td>
<td>Logspace if there is some element (a) s.t. all relations are (a)-valid, and NP-complete otherwise</td>
<td></td>
</tr>
<tr>
<td>({\exists, \land, \neq}) (\forall, \land, =)</td>
<td>Logspace if there is some element (a) s.t. all relations are (a)-valid, and NP-complete otherwise</td>
<td></td>
</tr>
<tr>
<td>({\exists, \forall, \land}) ({\exists, \forall, \lor}) (\exists, \forall, \land, \neq) (\exists, \forall, \land, =)</td>
<td>CSP dichotomy conjecture: P or NP-complete</td>
<td></td>
</tr>
<tr>
<td>({\exists, \forall, \land} {\exists, \forall, \lor}) (\exists, \forall, \land, \neq) (\exists, \forall, \land, =)</td>
<td>QCSP polychotomy: P, NP-complete, or Pspace-complete ?</td>
<td></td>
</tr>
<tr>
<td>({\exists, \forall, \land, \neq}) (\exists, \forall, \land, =)</td>
<td>QCSP polychotomy: P, NP-complete, or Pspace-complete ?</td>
<td></td>
</tr>
<tr>
<td>(\forall, \exists, \land, \lor)</td>
<td>Tetrachotomy: P, NP-complete, co-NP-complete or Pspace-complete</td>
<td></td>
</tr>
<tr>
<td>({\forall, \exists, \land, \lor, =}) ({\forall, \exists, \land, \lor, \neq}) ({\neg, \exists, \forall, \land, \lor, =})</td>
<td>Logspace when (</td>
<td>\mathcal{D}</td>
</tr>
<tr>
<td>({\neg, \exists, \forall, \land, \lor})</td>
<td>Logspace when (</td>
<td>\mathcal{D}</td>
</tr>
<tr>
<td>({\neg, \exists, \forall, \land, \lor})</td>
<td>Logspace when (</td>
<td>\mathcal{D}</td>
</tr>
</tbody>
</table>
First-order structures

Relational structures:

\[B := (B; R_1, R_2, \ldots) \]

Functional structures:

\[B := (D; f_1, f_2, \ldots) \]

functional structures = algebras.

What is the interplay between relational and functional structures?

Model Theory = Logic + Universal Algebra

All our structures are finite-domain.
Let R be an m-ary relation on \mathbb{B}. We say that a k-ary operation $f : B^k \rightarrow B$ preserves R (or R is invariant) under f if:

$$
\begin{align*}
\quad & f, \quad f, \quad \ldots, \quad f \\
\quad & (x_{11}, \quad x_{12}, \quad \ldots, \quad x_{1m}) \in R \\
\quad & (x_{21}, \quad x_{22}, \quad \ldots, \quad x_{2m}) \in R \\
\vdots & \quad \quad \quad \vdots \\
\quad & (x_{k1}, \quad x_{k2}, \quad \ldots, \quad x_{km}) \in R \\
\quad & (y_1, \quad y_2, \quad \ldots, \quad y_m) \in R
\end{align*}
$$

where each $y_i = f(x_{1i}, x_{2i}, \ldots, x_{ki})$.

- operations that preserve each of the relations of \mathbb{B} are $\text{Pol}(\mathbb{B})$.
- relations invariant under each operation of \mathbb{B} are $\text{Inv}(\mathbb{B})$.
Let \mathbb{B} and \mathbb{B} be over the same finite domain B.

\begin{align*}
\text{Inv}(\text{Pol}(\mathbb{B})) &= \langle \mathbb{B} \rangle \{\exists, \wedge, =\} \\
\text{Inv}(\text{surPol}(\mathbb{B})) &= \langle \mathbb{B} \rangle \{\forall, \exists, \wedge, =\}
\end{align*}

Idempotent operations are **surjective**! The **algebraic** definition for $\text{QCSP}(\mathbb{B})$ has

- **Input**: a sentence ϕ of $\{\forall, \exists, \wedge\}$-FO with some relations $\mathbb{B} \in \text{Inv}(\mathbb{B})$.
- **Question**: does $\mathbb{B} \models \phi$?

What if $\text{Inv}(\mathbb{B})$ is **infinite**?
Each relation R can be given as a list of tuples, but this is far too lengthy! How about a Boolean formula ϕ in atoms

- $v = v'$ and $v = c$,

where c is a domain element. The problem is that recognising, e.g., non-emptiness of the relation can be NP-hard! Following others, e.g. [Bodirsky & Dalmau 2006] we will ask for

- ϕ in DNF,

However, our main result will be a separation NP versus co-NP-hard, so this is not a big deal!
Infinite languages on a finite domain

Example 1.

\[
\{ (1, 2), (2, 1), (x \neq y \lor x = 1) \\
2, 3), (3, 2), \\
(1, 3), (3, 1), \\
(1, 1) \}
\]

Example 2.

\[
\{ (1, 0, 0), (0, 1, 0), (0, 0, 1), (x \neq y \lor y \neq z) \\
1, 1, 0), (1, 0, 1), (1, 1, 0), \}
\]
Call an algebra B k-PGP-switchable if B^m is generated from the set of m-tuples of the form

- $(x_1, \ldots, x_1, x_2, \ldots, x_2, \ldots, \ldots, x_{k'}, \ldots, x_{k'})$ for some $k' \leq k$.

Switchability were originally introduced in connection with the QCSP by Hubie Chen!

Theorem (Chen 2008)

If \mathbb{A} is switchable then $QCSP(\mathbb{A})$ is in NP.

Theorem (LICS 2015)

\mathbb{A} is PGP-switchable iff it is switchable.
A number of handsome people worked on the PGP-EGP dichotomy conjecture.

Conjecture

Let B be a finite idempotent algebra, then either B has PGP or it has EGP.

In 2015, Dmitriy Zhuk solved it.

Theorem (Zhuk 2015)

Let B be a finite algebra, then either B is PGP-switchable or it has EGP.

In order to prove this result, Zhuk assumes B is not PGP-switchable and finds the existence of a certain class of relations in $\text{Inv}(B)$.
Church of Switchability

B. M.

switchability

Results

Henceforth, let A be an idempotent algebra on a finite domain A.

Conjecture (Chen Conjecture 2012)

Let B be a finite relational structure expanded with all constants.
If $\text{Pol}(B)$ has PGP, then $\text{QCSP}(B)$ is in NP; otherwise $\text{QCSP}(B)$ is Pspace-complete.

Theorem (Revised Chen Conjecture)

If A satisfies PGP, then $\text{QCSP}($Inv$(A))$ is in NP. Otherwise, if A satisfies EGP, then $\text{QCSP}($Inv$(A))$ is co-NP-hard.

Conjecture (Alternative Chen Conjecture)

If A satisfies PGP, then for every finite reduct $B \subseteq \text{Inv}(A)$, $\text{QCSP}(B)$ is in NP. Otherwise, there exists a finite reduct $B \subseteq \text{Inv}(A)$ so that $\text{QCSP}(B)$ is co-NP-hard.
Results

Henceforth, let A be an idempotent algebra on a finite domain A.

Conjecture (Chen Conjecture 2012)

Let B be a finite relational structure expanded with all constants. If $Pol(B)$ has PGP, then $QCSP(B)$ is in NP; otherwise $QCSP(B)$ is Pspace-complete.

Theorem (Revised Chen Conjecture)

Either $QCSP(Inv(A))$ is co-NP-hard or $QCSP(Inv(A))$ has the same complexity as $CSP(Inv(A))$.

Conjecture (Alternative Chen Conjecture False)

If A satisfies PGP, then for every finite reduct $B \subseteq Inv(A)$, $QCSP(B)$ is in NP. Otherwise, there exists a finite reduct $B \subseteq Inv(A)$ so that $QCSP(B)$ is co-NP-hard.
Tractability

We know from Zhuk 2015 that

\[\text{PGP} \rightarrow \text{PGP-switchability} \]

and from [LICS 2015]

\[\text{PGP-switchability} \rightarrow \text{switchability} \]

whereupon Chen 2008 gives

\[\text{switchability} \rightarrow \text{QCSP tractability}. \]
Henceforth, α, β be strict subsets of A so that $\alpha \cup \beta = A$.

Theorem (Zhuk 2015)

Algebra \mathbb{A} (idempotent) has EGP iff exists such α, β with

$$
\sigma_k(x_1, y_1, \ldots, x_k, y_k) := \rho(x_1, y_1) \lor \ldots \lor \rho(x_k, y_k),
$$

where $\rho(x, y) = (\alpha \times \alpha) \cup (\beta \times \beta)$, is in $\text{Inv}(\mathbb{A})$, for each $k \in \mathbb{N}$.

We prefer the relation $\tau_k(x_1, y_1, z_1 \ldots, x_k, y_k, z_k)$ defined by

$$
\tau_k(x_1, y_1, z_1 \ldots, x_k, y_k, z_k) := \rho'(x_1, y_1, z_1) \lor \ldots \lor \rho'(x_k, y_k, z_k),
$$

where $\rho'(x, y, z) = (\alpha \times \alpha \times \alpha) \cup (\beta \times \beta \times \beta)$.

Corollary

Algebra \mathbb{A} (idempotent) has EGP iff exists such α, β with $\tau_k(x_1, y_1, z_1 \ldots, x_k, y_k, z_k)$ in $\text{Inv}(\mathbb{A})$, for each $k \in \mathbb{N}$.
Theorem

If $\text{Inv}(A)$ satisfies EGP, then QCSP($\text{Inv}(A)$) is co-NP-hard.

Proof.

Reduce from the complement of (monotone) 3-not-all-equal-sat.

$$\exists x^1_1, x^2_1, x^3_1, \ldots, \ldots, x^1_m, x^2_m, x^3_m \text{NAE}(x^1_1, x^2_1, x^3_1) \land \ldots \land \text{NAE}(x^1_m, x^2_m, x^3_m)$$

becomes

$$\forall x^1_1, x^2_1, x^3_1, \ldots, \ldots, x^1_m, x^2_m, x^3_m \rho'(x^1_1, x^2_1, x^3_1) \lor \ldots \lor \rho'(x^1_m, x^2_m, x^3_m)$$

where we note that $\tau_m(x_1, y_1, z_1 \ldots, x_m, y_m, z_m) :=$

$$\rho'(x_1, y_1, z_1) \lor \ldots \lor \rho'(x_m, y_m, z_m)$$

has a DNF representation that is polynomially-sized in m.
Recall, α, β be strict subsets of A so that $\alpha \cup \beta = A$. Now ask further that $\alpha \cap \beta \neq \emptyset$.

Corollary

$\text{QCSP}(A; \{\tau_n : n \in \mathbb{N}\}, \{a : a \in A\})$ is co-NP-hard.

In fact,

Proposition

$\text{QCSP}(A; \{\tau_n : n \in \mathbb{N}\}, \{a : a \in A\})$ is in co-NP.

Proof.

Roughly speaking, evaluate all existential variables to something in $\alpha \cap \beta$. But $(A; \{\tau_n : n \in \mathbb{N}\}, \{a : a \in A\})$ is not finitely related. □

Proposition

For every finite reduct \mathcal{B} of $(A; \{\tau_n : n \in \mathbb{N}\}, \{a : a \in A\})$, $\text{QCSP}(\mathcal{B})$ is in NL.
The conventional definition for $\text{QCSP}(\mathcal{B})$, where (\mathcal{B}) is a finite constraint language, is

- Input: a sentence ϕ of $\{\forall, \exists, \land\}$-FO.
- Question: does $\mathcal{B} \models \phi$?

Conjecture (Chen Conjecture + CSP Dichotomy)

Let \mathcal{B} be a finite relational structure expanded with all constants. Either $\text{QCSP}(\mathcal{B})$ is in P, is NP-complete or is Pspace-complete.
Example $R_{\delta,3}$.

\[\{(1, -, -), (2, -, -), (0, 0, 0), (0, 1, 1), (0, 2, 2), (x \neq 0 \lor y = z)\}\]

Example $R_{\text{and},2}$.

\[\{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1), (2, -, -), (-, 2, -)\}\]

- QCSP($\{0, 1, 2\}; 0, 1, 2, R_{\text{and},2}, R_{\delta}$) is co-NP-complete.
Death of the Chen Conjecture II

Example $R_{\delta,2}$.

\[
\{ (0, 0), (1, 0), (2, 0), \\
(1, 2), (2, 2) \}
\]

Example $R_{\text{and},2}$.

\[
\{ (0, 0), (1, 0), (2, 0), \\
(1, 2), (2, 2) \}
\]

- $\text{Pol}(\{0, 1, 2\}; 0, 1, 2, R_{\text{and},2}, R_{\delta,3})$ has EGP.
- $\text{QCSP}(\{0, 1, 2\}; 0, 1, 2, R_{\text{and},2}, R_{\delta,3})$ is in P.
QCSP Monsters

There are finite \(\mathcal{B} \) so that QCSP(\(\mathcal{B} \)) ranges over

- in P.
- NP-complete.
- Pspace-complete.
- co-NP-complete.
- DP-complete.
- \(\Theta^P_2 \)-complete.
- ...

Theorem (Zhuk & M. 2019)

Let \(\mathcal{B} \) be a finite 3-element relational structure expanded with all constants. Either QCSP(\(\mathcal{B} \)) is in P, is NP-complete, is co-NP-complete or is Pspace-complete.
Future of the Chen Conjecture

The conservative case is a natural large class on which the Chen Conjecture holds.

Theorem (Zhuk & M. 2019)

Let \mathcal{B} be a finite relational structure expanded with all unary relation. Either $\text{QCSP}(\mathcal{B})$ is in P, is NP-complete, or is Pspace-complete.

Can PGP and EGP be sensibly modified to make the Chen Conjecture “true”?