Walking Randomly, Massively, and Efficiently Krzysztof Onak IBM Research

Joint work with Jakub Łącki (Google), Slobodan Mitrović (MIT), and Piotr Sankowski (University of Warsaw)

(Idealized) Past

Single machine directly accessing the entire data set

Krzysztof Onak (IBM Research)

Walking Randomly, Massively, and Efficiently

The Cloud

Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible

The Cloud

Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible

Massive data processing systems: MapReduce, Spark, Hadoop, Dryad, IBM Streams, Pregel, ...

The Cloud

Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible

Develop algorithms that leverage the platform's parallelism!

Massive data processing systems: MapReduce, Spark, Hadoop, Dryad, IBM Streams, Pregel, ...

Talk Plan

- The Massively Parallel Computation model
- Our Results
- Algorithms for Undirected Graphs
 - + Lower Bounds
 - + Applications to Property Testing
- Algorithms for Directed Graphs via Series of Transformations

Massively Parallel Computation

M machinesS space per machineInput: *m* edges from a graph on *n* vertices

M machinesS space per machineInput: *m* edges from a graph on *n* vertices

• Initially: each machine receives $\sim m/M$ edges

M machinesS space per machineInput: *m* edges from a graph on *n* vertices

- Initially: each machine receives $\sim m/M$ edges
- Single round:
 - 1. Each machine performs computation
 - 2. Each machine sends and receives at most O(S) data

 Introduced by Karloff, Suri, Vassilvitskii (2010) to model MapReduce due to Dean, Ghemawat (2004)

(from Dean, Ghemawat "MapReduce: Simplified Data Processing on Large Clusters")

Walking Randomly, Massively, and Efficiently

- Introduced by Karloff, Suri, Vassilvitskii (2010) to model MapReduce due to Dean, Ghemawat (2004)
- Essential: space per machine $S = m^{\Omega(1)}$ (e.g., $S = \Omega(\sqrt{m})$)

- Introduced by Karloff, Suri, Vassilvitskii (2010) to model MapReduce due to Dean, Ghemawat (2004)
- Essential: space per machine $S = m^{\Omega(1)}$ (e.g., $S = \Omega(\sqrt{m})$)
- Total space considerations:

[Beame 2009: Problem 27 at sublinear.info] [Beame, Koutris, Suciu 2013] [Andoni, Nikolov, Onak, Yaroslavtsev 2014]

• Karloff et al. allow for $m^{1-\epsilon}$ machines with $m^{1-\epsilon}$ space

 \Rightarrow near quadratic total space $m^{2-2\epsilon}$

- Introduced by Karloff, Suri, Vassilvitskii (2010) to model MapReduce due to Dean, Ghemawat (2004)
- Essential: space per machine $S = m^{\Omega(1)}$ (e.g., $S = \Omega(\sqrt{m})$)
- Total space considerations:

[Beame 2009: Problem 27 at sublinear.info] [Beame, Koutris, Suciu 2013] [Andoni, Nikolov, Onak, Yaroslavtsev 2014]

- Karloff et al. allow for $m^{1-\epsilon}$ machines with $m^{1-\epsilon}$ space \Rightarrow near quadratic total space $m^{2-2\epsilon}$
- A refined version asks for near-linear total space: $M \times S = m^{1+o(1)}$

Three Main Memory Regimes

- Superlinear: $S = n^{1+\Omega(1)}$
 - Many early papers [Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011] ...

• Round complexity: usually O(1)

Three Main Memory Regimes

- Superlinear: $S = n^{1+\Omega(1)}$
 - Many early papers [Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011] ...

- Round complexity: usually O(1)
- Near-linear: $S = \widetilde{\Theta}(n)$
 - Not much was happening until 2017
 - Matchings, Vertex Cover, MIS in O(log log n) rounds
 - Connectivity in O(1) rounds
 - Very similar to the CONGESTED CLIQUE model

Three Main Memory Regimes

- Superlinear: $S = n^{1+\Omega(1)}$
 - Many early papers [Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011] ...

- Round complexity: usually O(1)
- Near-linear: $S = \widetilde{\Theta}(n)$
 - Not much was happening until 2017
 - Matchings, Vertex Cover, MIS in O(log log n) rounds
 - Connectivity in O(1) rounds
 - Very similar to the CONGESTED CLIQUE model
- Sublinear: $S = O(n^{\alpha})$ for $\alpha \in (0, 1)$
 - Most interesting for large sparse graphs
 - Results in this talk
 - Beating $O(\log n)$ becomes a challenge

Main goal: minimize the number of rounds

- PRAM:
 - · can usually be simulated in the same number of rounds
 - often $\Omega(\log n)$ rounds

Main goal: minimize the number of rounds

- PRAM:
 - · can usually be simulated in the same number of rounds
 - often $\Omega(\log n)$ rounds

• Fewer parallel rounds than best PRAM algorithms?

O(1) or O(poly(log log N)) rounds of MPC?

Our Results

Random Walks

Why study random walks?

Useful primitive! Sample applications:

- PageRank and rating web pages
- optimal PRAM algorithms for connectivity
- partitioning graphs
- minimizing query complexity in property testing
- graph matchings in regular graphs
- generating random spanning trees
- volume estimation
- counting problems

Random walk on a graph:

At every step select a random outgoing edge

In general, the set of options could be weighted

Our Results

Setting: strongly sublinear space per machine, i.e., $O(n^{\alpha})$ for $\alpha \in (0, 1)$

Generate a small number of length-L random walks from every vertex

- undirected graphs: $O(\log L)$ rounds
- directed graphs: $O((\log \log n)^2 + \log^2 L)$ rounds

PageRank: $O((\log \log n)^2 + \log^2(1/\epsilon))$ rounds

- multiplicative approximation for all vertices
- ϵ = teleportation probability

Undirected Graphs

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:

- Random walks are memoryless
- Compute different sections and stitch them together?
- For *L*-step random walk, compute independently the first and second half of length *L*/2 via recursion?

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:

- Random walks are memoryless
- Compute different sections and stitch them together?
- For *L*-step random walk, compute independently the first and second half of length *L*/2 via recursion?

Obstacles:

- We don't know where the second L/2 steps start
- Compute many possible continuations?

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:

- Random walks are memoryless
- Compute different sections and stitch them together?
- For *L*-step random walk, compute independently the first and second half of length *L*/2 via recursion?

Obstacles:

- We don't know where the second L/2 steps start
- Compute many possible continuations?
- With many random walks, they could collide

Undirected Graphs

What we achieve: many random walks from each vertex

Undirected Graphs

What we achieve: many random walks from each vertex

How:

- Start from the stationary distribution: $\frac{\deg(v)}{2m}$ for vertex v
 - After any number of steps, the distribution will be the same
- Sample slightly more edges for consecutive steps to ensure that number of continuations is sufficient
- Roughly $O(\deg(v) \cdot \log n)$ random walks from vertex v
- Use $O(\log L)$ rounds to combine edges into random walks

Is O(log L) Rounds Optimal?

- Space per machine: $S = n^{\alpha}$ for $\alpha \in (0, 1)$
- Problem: One or two cycles?

Best known algorithm: $O(\log n)$ rounds

Is O(log L) Rounds Optimal?

- Space per machine: $S = n^{\alpha}$ for $\alpha \in (0, 1)$
- Problem: One or two cycles?

Best known algorithm: $O(\log n)$ rounds

Good starting point for reductions:

We show: if we can compute O(log⁴ n)-length random walks in o(log log n) rounds, then this problem can be solved in o(log n) rounds

Is O(log L) Rounds Optimal?

- Space per machine: $S = n^{\alpha}$ for $\alpha \in (0, 1)$
- Problem: One or two cycles?

Best known algorithm: $O(\log n)$ rounds

Good starting point for reductions:

- We show: if we can compute O(log⁴ n)-length random walks in o(log log n) rounds, then this problem can be solved in o(log n) rounds
- $\Omega(\log n)$ conditional lower bound for exact bipartiteness

Krzysztof Onak (IBM Research)

Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):

- [Goldreich Ron 1999]: sampling $O(\sqrt{n})$ random walks from a random vertex is likely to detect an odd length cycle
- Can as well sample O(1) random walks from all vertices

Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):

- [Goldreich Ron 1999]: sampling $O(\sqrt{n})$ random walks from a random vertex is likely to detect an odd length cycle
- Can as well sample O(1) random walks from all vertices

Testing if a graph is an expander:

- Classic property testing: [Goldrech, Ron 2000] [Czumaj, Sohler 2007] ...
- Expander: two random walks collide with probability close to 1/n
- Far from expander: higher probability for a random starting vertex
- Tweak the proof of Czumaj and Sohler (2007) to distribute starting points of random walks over all vertices

Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):

- [Goldreich Ron 1999]: sampling $O(\sqrt{n})$ random walks from a random vertex is likely to detect an odd length cycle
- Can as well sample O(1) random walks from all vertices

Testing if a graph is an expander:

- Classic property testing: [Goldrech, Ron 2000] [Czumaj, Sohler 2007] ...
- Expander: two random walks collide with probability close to 1/n
- Far from expander: higher probability for a random starting vertex
- Tweak the proof of Czumaj and Sohler (2007) to distribute starting points of random walks over all vertices

Open question: Can this be done for testing clusterability?

How About Directed Graphs?

Difficulties:

- No explicit stationary distribution
- Values can be as low as $n^{-\Omega(n)}$

PageRank for Undirected Graphs

Definition of PageRank

PageRank: measure of importance of nodes in a graph

- Stationary distribution
- Random walk:
 - with probability 1ϵ , follow a random outgoing edge
 - with probability ϵ , teleport to uniformly selected vertex in the entire graph
- $\epsilon = \text{teleportation probability}$

Alternate Definition

This process gives the same distribution [Breyer 2002]

- Select a vertex v uniformly at random
- Walk on the Markov chain until teleportation from some vertex *u*
- *u* distributed according to PageRank

Algorithm for Undirected PageRank

Algorithm:

• Know how to generate random walks on the underlying undirected graph, starting point selected uniformly

Algorithm for Undirected PageRank

Algorithm:

- Know how to generate random walks on the underlying undirected graph, starting point selected uniformly
- Toss a biased coin at every step to decide if teleportation occurs
- Distribution of vertices right before teleportation is PageRank

Algorithm for Undirected PageRank

Algorithm:

- Know how to generate random walks on the underlying undirected graph, starting point selected uniformly
- Toss a biased coin at every step to decide if teleportation occurs
- Distribution of vertices right before teleportation is PageRank
- Need at most $O(\epsilon^{-1} \log n)$ random walks from every vertex
- All random walks will teleport whp. after $O(e^{-1} \log n)$ steps

Important note: This works for directed graphs as long as someone gives us a collection of random walks with uniformly selected starting points

PageRank for Balanced Directed Graphs

Krzysztof Onak (IBM Research)

Walking Randomly, Massively, and Efficiently

c-Balanced Directed Graph

- Constant *c* ∈ (0, 1)
- For every vertex vertex v,

 $\operatorname{outdeg}(v) \geq c \cdot \operatorname{indeg}(b)$

 Random incident edge is directed in the correct direction with non-trivial probability

Transformation

G is *c*-balanced graph

 P_G = PageRank transition probability matrix for G $\bar{G} =$ undirected version of G

 $P_{\bar{G}} =$ PageRank transition probability matrix for \bar{G}

Transformation

G is c-balanced graph

 P_G = PageRank transition probability matrix for *G* $\bar{G} =$ undirected version of G

 $P_{\bar{G}} = PageRank transition probability matrix for <math>\bar{G}$

Sequence:
$$0 = \delta_0 < \delta_1 < ... < \delta_{k-1} < \delta_k = 1$$
.

Intermediate PageRank transition probability matrices:

 $\boldsymbol{P}_i = \delta_i \boldsymbol{P}_G + (1 - \delta_i) \boldsymbol{P}_{\bar{G}}$

Transformation

G is c-balanced graph

 P_G = PageRank transition probability matrix for *G* $\bar{G} =$ undirected version of G

 $P_{\bar{G}} = PageRank transition probability matrix for <math>\bar{G}$

Sequence:
$$0 = \delta_0 < \delta_1 < ... < \delta_{k-1} < \delta_k = 1$$
.

Intermediate PageRank transition probability matrices:

$$\boldsymbol{P}_i = \delta_i \boldsymbol{P}_G + (1 - \delta_i) \boldsymbol{P}_{\bar{G}}$$

How:

- Know how to compute stationary distribution for P₀
- Want to compute stationary distribution for *P_k*
- We show how to move from P_i to P_{i+1} for $\delta_{i+1} \delta_i \approx \frac{1}{\log \log n}$

Transition from P_i to P_{i+1}

1. Use stationary distribution for P_i to generate random walks for P_i

Transition from P_i to P_{i+1}

- 1. Use stationary distribution for P_i to generate random walks for P_i
- 2. Use rejection sampling to adjust probabilities of random walks:
 - Every time we take a step in the "wrong" direction, reject the walk with small probability, so they come from P_{i+1}

Transition from P_i to P_{i+1}

- 1. Use stationary distribution for P_i to generate random walks for P_i
- 2. Use rejection sampling to adjust probabilities of random walks:
 - Every time we take a step in the "wrong" direction, reject the walk with small probability, so they come from P_{i+1}
- 3. Use the surviving random walks to compute PageRank for P_{i+1}

PageRank for General Directed Graphs

Replacing Vertices with Paths

• Previous approach does not work for general graphs: would need a lot of samples at a vertex with few outgoing edges but lots of coming in

Replacing Vertices with Paths

- Previous approach does not work for general graphs: would need a lot of samples at a vertex with few outgoing edges but lots of coming in
- Replace vertices v with directed O(log n)-paths
 - *i*-th edge: $\max n/2^i$, indeg(v) copies

Replacing Vertices with Paths

- Previous approach does not work for general graphs: would need a lot of samples at a vertex with few outgoing edges but lots of coming in
- Replace vertices v with directed O(log n)-paths
 - *i*-th edge: $\max n/2^i$, indeg(v) copies
- Correspondingly lower the teleportation probability
- Transition from $\epsilon = 1/2$ to $\epsilon/\log n$ (again via series of transitions)

Generating Random Walks in Directed Graphs

Generating Random Walks in Directed Graphs

- L = length of desired random walks
- Leverage the fact that we know the associated PageRank
- Set the teleportation probability to 1/L
- · Generate random walks from the PageRank Markov Chain
- Throw away those that teleported at least once
- A random walk "survives" with probability $\Omega(1)$

1 Are the "squares" needed? $O(\log L)$ rounds for directed random walks?

- 1 Are the "squares" needed? $O(\log L)$ rounds for directed random walks?
- 2 Testing clusterability?

- 1 Are the "squares" needed? $O(\log L)$ rounds for directed random walks?
- 2 Testing clusterability?
- 3 More general study of property testing guarantees in MPC?

- 1 Are the "squares" needed? $O(\log L)$ rounds for directed random walks?
- 2 Testing clusterability?
- 3 More general study of property testing guarantees in MPC?

Questions?