# Walking Randomly, Massively, and Efficiently <br> Krzysztof Onak IBM Research 

Joint work with Jakub Łącki (Google), Slobodan Mitrović (MIT), and Piotr Sankowski (University of Warsaw)

## (Idealized) Past



Single machine directly accessing the entire data set

## The Cloud

## Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible


## The Cloud

## Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible

Massive data processing systems: MapReduce, Spark, Hadoop, Dryad, IBM Streams, Pregel, ...

标解 $=$ dapo

## The Cloud

Setting: Data sets distributed across several machines
Why: full access by a small number of machines not feasible

## Develop algorithms that leverage the platform's parallelism!

Massive data processing systems: MapReduce, Spark, Hadoop, Dryad, IBM Streams, Pregel, ...


## Talk Plan

- The Massively Parallel Computation model
- Our Results
- Algorithms for Undirected Graphs
+ Lower Bounds
+ Applications to Property Testing
- Algorithms for Directed Graphs via Series of Transformations


## Massively Parallel Computation

## Model: Massively Parallel Computation (MPC)

## $M$ machines $\quad S$ space per machine

Input: $m$ edges from a graph on $n$ vertices


## Model: Massively Parallel Computation (MPC)

## $M$ machines $\quad S$ space per machine

Input: $m$ edges from a graph on $n$ vertices


- Initially: each machine receives $\sim m / M$ edges


## Model: Massively Parallel Computation (MPC)

## $M$ machines $\quad S$ space per machine

Input: $m$ edges from a graph on $n$ vertices


- Initially: each machine receives $\sim m / M$ edges
- Single round:

1. Each machine performs computation
2. Each machine sends and receives at most $O(S)$ data

## Model: Massively Parallel Computation (MPC)

- Introduced by Karloff, Suri, Vassilvitskii (2010) to model MapReduce due to Dean, Ghemawat (2004)

(from Dean, Ghemawat "MapReduce: Simplified Data Processing on Large Clusters")


## Model: Massively Parallel Computation (MPC)

- Introduced by Karloff, Suri, Vassilvitskii (2010) to model MapReduce due to Dean, Ghemawat (2004)
- Essential: space per machine $S=m^{\Omega(1)}$ (e.g., $\left.S=\Omega(\sqrt{m})\right)$


## Model: Massively Parallel Computation (MPC)

- Introduced by Karloff, Suri, Vassilvitskii (2010) to model MapReduce due to Dean, Ghemawat (2004)
- Essential: space per machine $S=m^{\Omega(1)}($ e.g., $S=\Omega(\sqrt{m}))$
- Total space considerations:
[Beame 2009: Problem 27 at sublinear.info]
[Beame, Koutris, Suciu 2013]
[Andoni, Nikolov, Onak, Yaroslavtsev 2014]
- Karloff et al. allow for $m^{1-\epsilon}$ machines with $m^{1-\epsilon}$ space
$\Rightarrow$ near quadratic total space $m^{2-2 \epsilon}$


## Model: Massively Parallel Computation (MPC)

- Introduced by Karloff, Suri, Vassilvitskii (2010) to model MapReduce due to Dean, Ghemawat (2004)
- Essential: space per machine $S=m^{\Omega(1)}$ (e.g., $\left.S=\Omega(\sqrt{m})\right)$
- Total space considerations:
[Beame 2009: Problem 27 at sublinear.info]
[Beame, Koutris, Suciu 2013]
[Andoni, Nikolov, Onak, Yaroslavtsev 2014]
- Karloff et al. allow for $m^{1-\epsilon}$ machines with $m^{1-\epsilon}$ space
$\Rightarrow$ near quadratic total space $m^{2-2 \epsilon}$
- A refined version asks for near-linear total space: $M \times S=m^{1+o(1)}$


## Three Main Memory Regimes

- Superlinear: $S=n^{1+\Omega(1)}$
- Many early papers [Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011] ...
- Round complexity: usually $O(1)$


## Three Main Memory Regimes

- Superlinear: $S=n^{1+\Omega(1)}$
- Many early papers [Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011] ...
- Round complexity: usually $O(1)$
- Near-linear: $S=\widetilde{\Theta}(n)$
- Not much was happening until 2017
- Matchings, Vertex Cover, MIS in $O(\log \log n)$ rounds
- Connectivity in $O(1)$ rounds
- Very similar to the CONGESTED CLIQUE model


## Three Main Memory Regimes

- Superlinear: $S=n^{1+\Omega(1)}$
- Many early papers [Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011] ...
- Round complexity: usually $O(1)$
- Near-linear: $S=\widetilde{\Theta}(n)$
- Not much was happening until 2017
- Matchings, Vertex Cover, MIS in $O(\log \log n)$ rounds
- Connectivity in $O(1)$ rounds
- Very similar to the CONGESTED CLIQUE model
- Sublinear: $S=O\left(n^{\alpha}\right)$ for $\alpha \in(0,1)$
- Most interesting for large sparse graphs
- Results in this talk
- Beating $O(\log n)$ becomes a challenge


## Main goal: minimize the number of rounds

- PRAM:
- can usually be simulated in the same number of rounds
- often $\Omega(\log n)$ rounds



## Main goal: minimize the number of rounds

- PRAM:
- can usually be simulated in the same number of rounds
- often $\Omega(\log n)$ rounds

- Fewer parallel rounds than best PRAM algorithms?

$$
O(1) \text { or } O(\text { poly }(\log \log N)) \text { rounds of MPC? }
$$

## Our Results

## Random Walks

Why study random walks?
Useful primitive! Sample applications:

- PageRank and rating web pages
- optimal PRAM algorithms for connectivity
- partitioning graphs
- minimizing query complexity in property testing
- graph matchings in regular graphs
- generating random spanning trees
- volume estimation
- counting problems


## Our Results

Setting: strongly sublinear space per machine, i.e., $O\left(n^{\alpha}\right)$ for $\alpha \in(0,1)$
Generate a small number of length- $L$ random walks from every vertex

- undirected graphs: $O(\log L)$ rounds
- directed graphs: $O\left((\log \log n)^{2}+\log ^{2} L\right)$ rounds

PageRank: $O\left((\log \log n)^{2}+\log ^{2}(1 / \epsilon)\right)$ rounds

- multiplicative approximation for all vertices
- $\epsilon=$ teleportation probability


## Undirected Graphs

## Basic Challenges

Trivial: compute random walk of length $L$ in $O(L)$ rounds


## Basic Challenges

Trivial: compute random walk of length $L$ in $O(L)$ rounds


## Basic Challenges

Trivial: compute random walk of length $L$ in $O(L)$ rounds


## Basic Challenges

Trivial: compute random walk of length $L$ in $O(L)$ rounds


## Basic Challenges

Trivial: compute random walk of length $L$ in $O(L)$ rounds


## Basic Challenges

Trivial: compute random walk of length $L$ in $O(L)$ rounds Idea for more efficient algorithm:

- Random walks are memoryless
- Compute different sections and stitch them together?
- For L-step random walk, compute independently the first and second half of length $L / 2$ via recursion?



## Basic Challenges

Trivial: compute random walk of length $L$ in $O(L)$ rounds
Idea for more efficient algorithm:

- Random walks are memoryless
- Compute different sections and stitch them together?
- For L-step random walk, compute independently the first and second half of length $L / 2$ via recursion?

Obstacles:

- We don't know where the second $L / 2$ steps start
- Compute many possible continuations?


## Basic Challenges

Trivial: compute random walk of length $L$ in $O(L)$ rounds
Idea for more efficient algorithm:

- Random walks are memoryless
- Compute different sections and stitch them together?
- For L-step random walk, compute independently the first and second half of length $L / 2$ via recursion?

Obstacles:

- We don't know where the second $L / 2$ steps start
- Compute many possible continuations?
- With many random walks, they could collide



## Undirected Graphs

What we achieve: many random walks from each vertex

## Undirected Graphs

What we achieve: many random walks from each vertex
How:

- Start from the stationary distribution: $\frac{\operatorname{deg}(v)}{2 m}$ for vertex $v$
- After any number of steps, the distribution will be the same
- Sample slightly more edges for consecutive steps to ensure that number of continuations is sufficient
- Roughly $O(\operatorname{deg}(v) \cdot \log n)$ random walks from vertex $v$
- Use $O(\log L)$ rounds to combine edges into random walks


## Is $O(\log L)$ Rounds Optimal?

- Space per machine: $S=n^{\alpha}$ for $\alpha \in(0,1)$
- Problem: One or two cycles?




Best known algorithm: $O(\log n)$ rounds

## Is $O(\log L)$ Rounds Optimal?

- Space per machine: $S=n^{\alpha}$ for $\alpha \in(0,1)$
- Problem: One or two cycles?




Best known algorithm: $O(\log n)$ rounds
Good starting point for reductions:

- We show: if we can compute $O\left(\log ^{4} n\right)$-length random walks in $o(\log \log n)$ rounds, then this problem can be solved in $o(\log n)$ rounds


## Is $O(\log L)$ Rounds Optimal?

- Space per machine: $S=n^{\alpha}$ for $\alpha \in(0,1)$
- Problem: One or two cycles?




Best known algorithm: $O(\log n)$ rounds
Good starting point for reductions:

- We show: if we can compute $O\left(\log ^{4} n\right)$-length random walks in $o(\log \log n)$ rounds, then this problem can be solved in $o(\log n)$ rounds
- $\Omega(\log n)$ conditional lower bound for exact bipartiteness


## Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):

- [Goldreich Ron 1999]: sampling $O(\sqrt{n})$ random walks from a random vertex is likely to detect an odd length cycle
- Can as well sample $O(1)$ random walks from all vertices


## Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):

- [Goldreich Ron 1999]: sampling $O(\sqrt{n})$ random walks from a random vertex is likely to detect an odd length cycle
- Can as well sample $O(1)$ random walks from all vertices

Testing if a graph is an expander:

- Classic property testing: [Goldrech, Ron 2000][Czumaj, Sohler 2007]...
- Expander: two random walks collide with probability close to $1 / n$
- Far from expander: higher probability for a random starting vertex
- Tweak the proof of Czumaj and Sohler (2007) to distribute starting points of random walks over all vertices


## Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):

- [Goldreich Ron 1999]: sampling $O(\sqrt{n})$ random walks from a random vertex is likely to detect an odd length cycle
- Can as well sample $O(1)$ random walks from all vertices

Testing if a graph is an expander:

- Classic property testing: [Goldrech, Ron 2000][Czumaj, Sohler 2007]...
- Expander: two random walks collide with probability close to $1 / n$
- Far from expander: higher probability for a random starting vertex
- Tweak the proof of Czumaj and Sohler (2007) to distribute starting points of random walks over all vertices
Open question: Can this be done for testing clusterability?


## How About Directed Graphs?

## Difficulties:

- No explicit stationary distribution
- Values can be as low as $n^{-\Omega(n)}$


## PageRank for Undirected Graphs

## Definition of PageRank

PageRank: measure of importance of nodes in a graph

- Stationary distribution
- Random walk:
- with probability $1-\epsilon$, follow a random outgoing edge
- with probability $\epsilon$, teleport to uniformly selected vertex in the entire graph
- $\epsilon=$ teleportation probability


## Alternate Definition

This process gives the same distribution [Breyer 2002]

- Select a vertex $v$ uniformly at random
- Walk on the Markov chain until teleportation from some vertex $u$
- $u$ distributed according to PageRank


## Algorithm for Undirected PageRank

## Algorithm:

- Know how to generate random walks on the underlying undirected graph, starting point selected uniformly


## Algorithm for Undirected PageRank

## Algorithm:

- Know how to generate random walks on the underlying undirected graph, starting point selected uniformly
- Toss a biased coin at every step to decide if teleportation occurs
- Distribution of vertices right before teleportation is PageRank


## Algorithm for Undirected PageRank

## Algorithm:

- Know how to generate random walks on the underlying undirected graph, starting point selected uniformly
- Toss a biased coin at every step to decide if teleportation occurs
- Distribution of vertices right before teleportation is PageRank
- Need at most $O\left(\epsilon^{-1} \log n\right)$ random walks from every vertex
- All random walks will teleport whp. after $O\left(\epsilon^{-1} \log n\right)$ steps

Important note: This works for directed graphs as long as someone gives us a collection of random walks with uniformly selected starting points

## PageRank

## for Balanced Directed Graphs

## c-Balanced Directed Graph

- Constant $c \in(0,1)$
- For every vertex vertex $v$,

$$
\operatorname{outdeg}(v) \geq c \cdot \operatorname{indeg}(b)
$$

- Random incident edge is directed in the correct direction with non-trivial probability


## Transformation

$G$ is $c$-balanced graph
$P_{G}=$ PageRank transition probability matrix for $G$
$\bar{G}=$ undirected version of $G$
$P_{\bar{G}}=$ PageRank transition probability matrix for $\bar{G}$

## Transformation

$G$ is $c$-balanced graph
$P_{G}=$ PageRank transition probability matrix for $G$
$\bar{G}=$ undirected version of $G$
$P_{\bar{G}}=$ PageRank transition probability matrix for $\bar{G}$

Sequence: $0=\delta_{0}<\delta_{1}<\ldots<\delta_{k-1}<\delta_{k}=1$.
Intermediate PageRank transition probability matrices:

$$
P_{i}=\delta_{i} P_{G}+\left(1-\delta_{i}\right) P_{\bar{G}}
$$

## Transformation

$G$ is $c$-balanced graph
$P_{G}=$ PageRank transition probability matrix for $G$
$\bar{G}=$ undirected version of $G$
$P_{\bar{G}}=$ PageRank transition probability matrix for $\bar{G}$

Sequence: $0=\delta_{0}<\delta_{1}<\ldots<\delta_{k-1}<\delta_{k}=1$.
Intermediate PageRank transition probability matrices:

$$
P_{i}=\delta_{i} P_{G}+\left(1-\delta_{i}\right) P_{\bar{G}}
$$

How:

- Know how to compute stationary distribution for $P_{0}$
- Want to compute stationary distribution for $P_{k}$
- We show how to move from $P_{i}$ to $P_{i+1}$ for $\delta_{i+1}-\delta_{i} \approx \frac{1}{\log \log n}$


## Transition from $P_{i}$ to $P_{i+1}$

1. Use stationary distribution for $P_{i}$ to generate random walks for $P_{i}$

## Transition from $P_{i}$ to $P_{i+1}$

1. Use stationary distribution for $P_{i}$ to generate random walks for $P_{i}$
2. Use rejection sampling to adjust probabilities of random walks:

- Every time we take a step in the "wrong" direction, reject the walk with small probability, so they come from $P_{i+1}$


## Transition from $P_{i}$ to $P_{i+1}$

1. Use stationary distribution for $P_{i}$ to generate random walks for $P_{i}$
2. Use rejection sampling to adjust probabilities of random walks:

- Every time we take a step in the "wrong" direction, reject the walk with small probability, so they come from $P_{i+1}$

3. Use the surviving random walks to compute PageRank for $P_{i+1}$

## PageRank

## for General Directed Graphs

## Replacing Vertices with Paths

- Previous approach does not work for general graphs: would need a lot of samples at a vertex with few outgoing edges but lots of coming in


## Replacing Vertices with Paths

- Previous approach does not work for general graphs: would need a lot of samples at a vertex with few outgoing edges but lots of coming in
- Replace vertices $v$ with directed $O(\log n)$-paths
- $i$-th edge: $\max n / 2^{i}$, indeg $(v)$ copies


## Replacing Vertices with Paths

- Previous approach does not work for general graphs: would need a lot of samples at a vertex with few outgoing edges but lots of coming in
- Replace vertices $v$ with directed $O(\log n)$-paths
- $i$-th edge: $\max n / 2^{i}, \operatorname{indeg}(v)$ copies
- Correspondingly lower the teleportation probability
- Transition from $\epsilon=1 / 2$ to $\epsilon / \log n$ (again via series of transitions)


## Generating Random Walks in Directed Graphs

## Generating Random Walks in Directed Graphs

- $L=$ length of desired random walks
- Leverage the fact that we know the associated PageRank
- Set the teleportation probability to $1 / L$
- Generate random walks from the PageRank Markov Chain
- Throw away those that teleported at least once
- A random walk "survives" with probability $\Omega(1)$


## Open Questions

## Open Questions

(1) Are the "squares" needed? $O(\log L)$ rounds for directed random walks?

## Open Questions

(1) Are the "squares" needed? $O(\log L)$ rounds for directed random walks?
(2) Testing clusterability?

## Open Questions

(1) Are the "squares" needed? $O(\log L)$ rounds for directed random walks?
(2) Testing clusterability?
(3) More general study of property testing guarantees in MPC?

## Open Questions

(1) Are the "squares" needed? $O(\log L)$ rounds for directed random walks?
(2 Testing clusterability?
(3) More general study of property testing guarantees in MPC?

## Questions?

