Solving Large Scale Semidefinite Problems by Decomposition with application to Topology Optimization with Vibration Constraints

Michal Kočvara

School of Mathematics, The University of Birmingham

DIMAP Seminar Warwick (Birmingham), 5 May 2020

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 1 / 36

Dimensions in (linear) Semidefinite Optimization

 $\min_{x \in \mathbb{R}^n} c^\top x$ subject to $\sum_{i=1}^n x_i A_i^{(k)} - B^{(k)} \succeq 0, \quad k = 1, \dots, p$

where

$$x \in \mathbb{R}^n$$
, $A_i^{(k)}$, $B^{(k)} \in \mathbb{R}^{m \times m}$

Majority of SDP software BAD ... n large, m large many variables, big matrix OK ... n small, m large rare GOOD ... n large, m small many variables, small matrix GOOD ... n large, m small, p large many small matrix constraints Michal Kočvara (University of Birmingham)

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...)
- Reformulate BAD problems as GOOD problems

(日)

PENSDP with an iterative solver

$$\min_{x\in\mathbb{R}^n} c^{\top}x \quad \text{s.t.} \quad \sum_{i=1}^n x_i A_i - B \succeq 0, \quad A_i, B \in \mathbb{R}^{m \times m}$$

Problems with large *n*, small *m* (Kim Toh) We have to solve repeatedly a dense $n \times n$ linear system.

			direct	iterative	
problem	n	m	CPU	CPU	CG/it
ham_8_3_4	16129	256	17701	30	1
ham_9_5_6	53761	512	mem	330	1
theta10	12470	500	12165	227	10
theta104	87845	500	mem	11953	25
theta12	17979	600	27565	254	8
theta123	90020	600	mem	10538	23
theta162	127600	800	mem	13197	13
sanr200-0.7	6 0 3 3	200	1146	30	12

mem... insufficient memory

Michal Kočvara (University of Birmingham)

PENSDP with hybrid strategy

Use PCG till it works, then switch to Cholesky and return to PCG, using the Ch-factor as a preconditioner.

Collection of chemical problems by M. Fukuda ...

Average Dimacs error $\approx 1.0e - 7$

problem	n	Cg-it	Chol-it	Nwt-it	CPU-hy	CPU-ch
NH2r14	1,743	921	4	69	526	4033
NH3+.r16	2,964	1529	3	72	2427	26634
NH4+.r18	4,239	1607	3	77	8931	> 100000
AlH.r20	7,230	2283	2	102	21720	???

() < </p>

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm

Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...), Optimization on manifolds (Absil)

Reformulate BAD problems as GOOD problems

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 6 / 36

(日)

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm

Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...), Optimization on manifolds (Absil)

Reformulate BAD problems as GOOD problems

(日)

Dimensions in (linear) Semidefinite Optimization

 $\min_{x \in \mathbb{R}^{n}} c^{\top} x$ subject to $\sum_{i=1}^{n} x_{i} A_{i}^{(k)} - B^{(k)} \succeq 0, \quad k = 1, \dots, p$

where

$$x \in \mathbb{R}^n$$
, $A_i^{(k)}$, $B^{(k)} \in \mathbb{R}^{m \times m}$

So we may want to replace BAD ...n large, m large, p=1 by GOOD ...n large, m small, p large many small matrix constraints

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 7 / 36

For a sparse symmetric matrix $A \in \mathbb{R}^{m \times m}$ define its (undirected, unweighted) sparsity graph $G_A(N, E)$: $N = \{1, \dots, m\}$ $e_{ij} = E \iff A_{ij} \neq 0, \quad i, j = 1, \dots n$

Some facts about the sparsity graph:

- G_A is chordal if and only if Cholesky factorization of $P^{\top}AP$ has zero fill-in for some perturbation P
- Cliques of G_A correspond to dense submatrices of A

Another chordal sparsity graph, 5-diagonal matrix

or the arrow matrix sparsity graph

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 9 / 36

< ロ > < 同 > < 回 > < 回 >

0

A non-chordal sparsity graph

DIMAP Seminar, May 2020 10 / 36

0

× × • × × • × × × × × × × × × • × ×

< ロ > < 同 > < 回 > < 回 >

A non-chordal sparsity graph

can be extended to a chordal sparsity graph

Michal Kočvara (University of Birmingham)

Chordal decomposition

S. Kim, M. Kojima, M. Mevissen and M. Yamashita, Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion, Mathematical Programming, 2011

Based on:

A. Griewank and Ph. Toint, On the existence of convex decompositions of partially separable functions, MPA 28, 1984

J. Agler, W. Helton, S. McCulough and L. Rodnan, Positive semidefinite matrices with a given sparsity pattern, LAA 107, 1988

See also:

L. Vandenberghe and M. Andersen, Chordal graphs and semidefinite optimization. Foundations and Trends in Optimization 1:241–433, 2015

Michal Kočvara (University of Birmingham)

Chordal decomposition

G(N, E) – graph with $N = \{1, \dots, n\}$ and max. cliques C_1, \dots, C_p .

$$\mathbb{S}^n(E) = \{ Y \in \mathbb{S}^n : Y_{ij} = 0 \ (i,j) \notin E \cup \{ (\ell,\ell), \ \ell \in N \} \}$$

$$\mathbb{S}^{C_k}_+ = \{ Y \succeq 0 : Y_{ij} = 0 \text{ if } (i,j) \notin C_k \times C_k \}$$

Theorem 1: G(N, E) is chordal if and only if for every $A \in \mathbb{S}^n(E)$, $A \succeq 0$, it holds that $\exists Y^k \in \mathbb{S}^{C_k}_+ \ (k = 1, ..., p)$ s.t. $A = Y^1 + Y^2 + ... + Y^p$.

Every psd matrix is a sum of psd matrices that are non-zero only on maximal cliques.

So constraint $A(x) \succeq 0$ replaced by: find matrices $Y^k(x) \succeq 0$, k = 1, ..., p that sum up to A.

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 13 / 36

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chordal sparsity graph, overlapping blocks

DIMAP Seminar, May 2020 14 / 36

< 同 > < 三 > < 三 >

Chordal decomposition

Theorem 1: G(N, E) is chordal if and only if for every $A \in \mathbb{S}^n(E)$, $A \succeq 0$, it holds that $\exists Y^k \in \mathbb{S}^{C_k}_+ \ (k = 1, ..., p)$ s.t. $A = Y^1 + Y^2 + ... + Y^p$.

Let
$$K = \begin{pmatrix} K_{1,1}^{(1)} & K_{1,2}^{(1)} & 0 \\ K_{2,1}^{(1)} & K_{2,2}^{(1)} + K_{1,1}^{(2)} & K_{1,2}^{(2)} \\ 0 & K_{2,1}^{(2)} & K_{2,2}^{(2)} \end{pmatrix}$$
 with $K^{(1)}, K^{(2)}$ dense.

Then $K \succeq 0 \Leftrightarrow K = Y^1 + Y^2$ such that

$$Y^{1} = \begin{pmatrix} K_{1,1}^{(1)} & K_{1,2}^{(1)} & 0 \\ K_{2,1}^{(1)} & K_{2,2}^{(1)} + S & 0 \\ 0 & 0 & 0 \end{pmatrix} \succeq 0, \ Y^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & K_{2,2}^{(2)} - S & K_{1,2}^{(2)} \\ 0 & K_{2,1}^{(2)} & K_{2,2}^{(2)} \end{pmatrix} \succeq 0$$

Even if $K^{(1)}, K^{(2)}$ not dense, we just assume that S is dense.

Michal Kočvara (University of Birmingham)

Chordal decomposition

Let $A \in \mathbb{S}^n$, $n \ge 3$, with a sparsity graph G = (N, E). Let $N = \{1, 2, ..., n\}$ be partitioned into $p \ge 2$ overlapping sets

 $N=I_1\cup I_2\cup\ldots\cup I_p.$

Define
$$I_{k,k+1} = I_k \cap I_{k+1} \neq \emptyset$$
, $k = 1, ..., p-1$.
Assume $A = \sum_{k=1}^{p} A_k$, with A_k only non-zero on I_k .

Corollary 1:
$$A \succeq 0$$
 if and only if
 $\exists S_k \in \mathbb{S}^{I_{k,k+1}}, k = 1, \dots, p-1 \text{ s.t.}$
 $A = \sum_{\substack{k=1 \ k \neq 0}}^{p} \widetilde{A}_k \text{ with } \widetilde{A}_k = A_k - S_{k-1} + S_k \quad (S_0 = S_p = [])$
and $\widetilde{A}_k \succeq 0 \ (k = 1, \dots, p).$

Michal Kočvara (University of Birmingham)

ъ

We can <u>choose</u> the partitioning $N = I_1 \cup I_2 \cup \ldots \cup I_p$!

Using the original theorem:

6 max. cliques of size 3, 5 additional 2 \times 2 variables

Using the corollary:

2 "cliques" of size 5, 1 additional 2×2 variable

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 17 / 36

We can <u>choose</u> the partitioning $N = I_1 \cup I_2 \cup \ldots \cup I_p$!

When we know the sparsity structure of *A*, we can choose a "regular" partitioning.

Application: Topology optimization

Aim:

Given an amount of material, boundary conditions and external load f, find the material distribution so that the body is as stiff as possible under f.

$$E(x) = \rho(x)E_0$$
 with $0 \le \rho \le \rho(x) \le \overline{\rho}$

 E_0 a given (homogeneous, isotropic) material

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 19 / 36

Topology optimization, example

Pixels—finite elements Color—value of variable ρ , constant on every element

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 20 / 36

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Equilibrium

Equilibrium equation:

$$\mathcal{K}(\boldsymbol{\rho})\boldsymbol{u} = \boldsymbol{f}, \qquad \mathcal{K}(\boldsymbol{\rho}) = \sum_{i=1}^{m} \boldsymbol{\rho}_{i} \mathcal{K}_{i} := \sum_{i=1}^{m} \sum_{j=1}^{G} \boldsymbol{B}_{i,j} \boldsymbol{\rho}_{i} \boldsymbol{E}_{0} \boldsymbol{B}_{i,j}^{\top}$$
$$\boldsymbol{f} := \sum_{i=1}^{m} \boldsymbol{f}_{i}$$

Standard finite element discretization:

Quadrilateral elements

- ρ ... piece-wise constant
- u... piece-wise bilinear (tri-linear)

Michal Kočvara (University of Birmingham)

TO primal formulation

$$\min_{\substack{\rho \in \mathbb{R}^m, \ u \in \mathbb{R}^n}} f^T u$$

subject to
$$(0 \le) \underline{\rho} \le \rho_i \le \overline{\rho}, \quad i = 1, \dots, m$$
$$\sum_{i=1}^m \rho_i \le 1$$
$$K(\rho)u = f$$

... large-scale nonlinear non-convex problem

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 22 / 36

・ロット (雪) (日) (日)

SDP formulation of TO

The TO problem

 $\min_{\rho \in \mathbb{R}^m, \ u \in \mathbb{R}^n, \ \gamma \in \mathbb{R}} \gamma$ subject to $f^T u < \gamma, \quad K(\rho) u = f$ $\sum \rho_i \leq 1, \quad \underline{\rho} \leq \rho_i \leq \overline{\rho}, \quad i = 1, \dots, m$

Helpful when vibration/buckling constraints present (=) (=) DIMAP Seminar, May 2020 23/36

Michal Kočvara (University of Birmingham)

SDP formulation of TO

The TO problem

 $\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \ u \in \mathbb{R}^{n}, \ \gamma \in \mathbb{R}} \ \gamma \\ \text{subject to} \\ f^{\mathsf{T}} u \leq \gamma, \quad \mathcal{K}(\rho) u = f \\ \sum \rho_{i} \leq \mathsf{1}, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = \mathsf{1}, \ldots, m \end{array}$

can be equivalently formulated as a linear SDP:

$$\begin{split} \min_{\rho \in \mathbb{R}^{m}, \ \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & \mathcal{K}(\rho) \end{array} \right) \succeq 0 \quad \text{(positive semidefinite)} \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m. \end{split}$$

Helpful when vibration/buckling constraints peosent (2) (2) (2)

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 23 / 36

SDP formulation of TO

The TO problem

 $\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \ u \in \mathbb{R}^{n}, \ \gamma \in \mathbb{R}} \ \gamma \\ \text{subject to} \\ f^{\mathsf{T}} u \leq \gamma, \quad \mathcal{K}(\rho) u = f \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m \end{array}$

can be equivalently formulated as a linear SDP:

$$\begin{split} \min_{\rho \in \mathbb{R}^{m}, \ \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & \mathcal{K}(\rho) \end{array} \right) \succeq 0 \quad \text{(positive semidefinite)} \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m. \end{split}$$

Helpful when vibration/buckling constraints presentImage: Second sec

Michal Kočvara (University of Birmingham)

SDP formulation of TO by decomposition

Both

$$\left(\begin{array}{cc} \gamma & \boldsymbol{f}^{T} \\ \boldsymbol{f} & \sum \rho_{i} \boldsymbol{K}_{i} \end{array}\right) \succeq \boldsymbol{0}$$

and

 $V(\hat{\lambda}; \rho) \succeq 0$

are large matrix constraints dependent on many variables ... bad for existing SDP software

Can we replace them by several smaller constraints equivalently?

DIMAP Seminar, May 2020 25 / 36

Chordal decomposition (recall)

Let $A \in \mathbb{S}^n$, $n \ge 3$, with a sparsity graph G = (N, E). Let $N = \{1, 2, ..., n\}$ be partitioned into $p \ge 2$ overlapping sets

 $N=I_1\cup I_2\cup\ldots\cup I_p.$

Define
$$I_{k,k+1} = I_k \cap I_{k+1} \neq \emptyset$$
, $k = 1, ..., p-1$.
Assume $A = \sum_{k=1}^{p} A_k$, with A_k only non-zero on I_k .

Corollary 1:
$$A \succeq 0$$
 if and only if
 $\exists S_k \in \mathbb{S}^{I_{k,k+1}}, k = 1, \dots, p-1 \text{ s.t.}$
 $A = \sum_{\substack{k=1 \ k \neq 0}}^{p} \widetilde{A}_k \text{ with } \widetilde{A}_k = A_k - S_{k-1} + S_k \quad (S_0 = S_p = [])$
and $\widetilde{A}_k \succeq 0 \ (k = 1, \dots, p).$

Michal Kočvara (University of Birmingham)

ъ

We can <u>choose</u> the partitioning $N = I_1 \cup I_2 \cup \ldots \cup I_p$!

Using the corollary:

2 "cliques" of size 5, 1 additional 2×2 variable

When we know the sparsity structure of *A*, we can choose a regular partitioning.

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 27 / 36

< ロ > < 同 > < 回 > < 回 >

SDP formulation of TO by DD

$$\left(egin{array}{cc} \mathcal{K}(
ho) & f \ f^{ op} & \gamma \end{array}
ight) \succeq 0 \qquad ext{and} \quad \mathcal{V}(\hat{\lambda};
ho) \succeq 0$$

are large matrix constraints dependent on many variables.

FE mesh, matrix $K(\rho)$ and its sparsity graph:

< ロ > < 同 > < 回 > < 回 >

Chordal decomposition

Even though $K^{(1)}$ and $K^{(2)}$ are sparse, we need to assume that *S* is dense.

- 4 同 ト 4 ヨ ト 4 ヨ ト

In this way, we can control the number and size of the maximal cliques and use the chordal decomposition theorem.

New result for arrow-type matrices: For the matrix inequality

$$\left(egin{array}{cc} \mathcal{K}(
ho) & f \ f^{ op} & \gamma \end{array}
ight) \succeq \mathbf{0}$$

the additional matrix variables *S* are rank-one; this further reduces the size of the solved SDP problem.

MK (2019): Decomposition of arrow type positive semidefinite matrices with application to topology optimization. arXiv:1911.09412

Numerical experiments

SDP codes tested: PENSDP, SeDuMi, SDPT3, Mosek

Results shown for Mosek: not the fastest for the original problem but has highest speedup

Mosek:

- version 8
- called from YALMIP
- difficult (for me) to control any options

- 4 同 2 4 日 2 4 日 2

Regular decomposition, 40x20 elements

Chordal decomposition

no of	no of	size of	no of	C	CPU		edup	
matrices	vars	matrix	iters	total	per iter	total	/iter	
1	801	1681	69	1045	15	1	1	
8	3523	243	58	31	0.53			
32	5489	73	44	9.7	0.22			
50	6376	51	46	8.8	0.19			
200	11243	19	37	6.9	0.19			
Arrow decomposition								
8	1032	243	70	28	0.40	37	38	
32	1492	73	63	7.6	0.12	138	126	
50	1764	51	64	7.1	0.11	147	137	
200	3544	19	51	5.1	0.10	204	151	
34	22997	11260	42	301	7	3	2	

Automatic decomposition using software SparseCoLO by Kim, Kojima, Mevissen and Yamashita (2011) Michai Kočvara (University of Birmingham)

Regular decomposition, 120x60 elements

Chordal decomposition

no of	no of	size of	no of	CP	U	speedup		
matr	vars	matrix	iters	total	per iter	total	/iter	
1	7200	14641	139	1045932	7524	1	1	
200	51539	99	60	236	3.9			
800	76977	33	50	129	2.6			
1800	106903	19	47	114	2.4			
Arrow decomposition								
200	12904	99	82	89	1.1	11752	6933	
800	21764	33	71	37	0.52	28268	14439	
1800	33424	19	65	42	0.65	24903	11645	

estimated; 1045932 sec \approx 6 days

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 33 / 36

"Best" decomposition (subdomain = 4 elements)

Arrow decomposition

	ORIGINAL			DEC	speedup			
problem	no of	size of	CPU	no of	size of	CPU		
	vars	matrix	total	vars	matrix	total		
40×20	801	1681	1045	3544	19	5	204	
60×30	1801	3721	12468	8164	19	9	1370	
80×40	3201	6561	78813	14684	19	17	4636	
100×50	5001	10201	312560	23104	19	25	12502	
120×60	7201	14641	1045932	33424	19	42	24903	
140×70	9801	19881	2900382	45664	19	59	49159	
160×80	12801	25921	7003213	59764	19	74	94638	
complexity <i>c</i> ·size ^q			<i>q</i> = 3.18		q = 1	.0006		
timos osti	times estimated: 7002012 and a 81 days							

times estimated; 7003213 sec \approx 81 days

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 34 / 36

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

CPU time, original versus decomposed

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 35 / 36

THE END

Michal Kočvara (University of Birmingham)

DIMAP Seminar, May 2020 36 / 36

э

(日) (四) (日) (日) (日)