Solving Large Scale Semidefinite Problems by Decomposition with application to
 Topology Optimization with Vibration Constraints

Michal Kočvara

School of Mathematics, The University of Birmingham

DIMAP Seminar
Warwick (Birmingham), 5 May 2020

Dimensions in (linear) Semidefinite Optimization

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} c^{\top} x \\
& \text { subject to } \\
& \qquad \sum_{i=1}^{n} x_{i} A_{i}^{(k)}-B^{(k)} \succeq 0, \quad k=1, \ldots, p
\end{aligned}
$$

where

$$
x \in \mathbb{R}^{n}, \quad A_{i}^{(k)}, \quad B^{(k)} \in \mathbb{R}^{m \times m}
$$

Majority of SDP software
BAD ...n large, m large many variables, big matrix
OK ...n small, m large rare
GOOD ...n large, m small many variables, small matrix
GOOD ...n large, m small, p large many small matrix constraints

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm

Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...)

- Reformulate BAD problems as GOOD problems

PENSDP with an iterative solver

$$
\min _{x \in \mathbb{R}^{n}} c^{\top} x \quad \text { s.t. } \quad \sum_{i=1}^{n} x_{i} A_{i}-B \succeq 0, \quad A_{i}, B \in \mathbb{R}^{m \times m}
$$

Problems with large n, small m (Kim Toh)
We have to solve repeatedly a dense $n \times n$ linear system.

			direct	iterative	
problem	n	m	CPU	CPU	CG/it
ham_-8_3-4	16329	256	17701	30	1
ham-9-__6	53761	512	mem	330	1
theta10	12470	500	12165	227	10
theta104	87845	500	mem	11953	25
theta12	19979	600	27565	254	8
theta123	90020	600	mem	10538	23
theta162	127600	800	mem	13197	13
sanr200-0.7	6033	200	1146	30	12

mem. . . insufficient memory

PENSDP with hybrid strategy

Use PCG till it works, then switch to Cholesky and return to PCG, using the Ch-factor as a preconditioner.

Collection of chemical problems by M. Fukuda ...
Average Dimacs error $\approx 1.0 e-7$

problem	n	Cg-it	Chol-it	Nwt-it	CPU-hy	CPU-ch
NH2-.r14	1,743	921	4	69	526	4033
NH3+.r16	2,964	1529	3	72	2427	26634
NH4+.r18	4,239	1607	3	77	8931	>100000
AlH.r20	7,230	2283	2	102	21720	$? ? ?$

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...), Optimization on manifolds (Absil)

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...), Optimization on manifolds (Absil)
- Reformulate BAD problems as GOOD problems

Dimensions in (linear) Semidefinite Optimization

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} c^{\top} x \\
& \text { subject to }
\end{aligned}
$$

$$
\sum_{i=1}^{n} x_{i} A_{i}^{(k)}-B^{(k)} \succeq 0, \quad k=1, \ldots, p
$$

where

$$
x \in \mathbb{R}^{n}, \quad A_{i}^{(k)}, \quad B^{(k)} \in \mathbb{R}^{m \times m}
$$

So we may want to replace
BAD ...n large, m large, $p=1$
by
GOOD ...n large, m small, p large many small matrix constraints

Graph representation of matrix sparsity

For a sparse symmetric matrix $A \in \mathbb{R}^{m \times m}$ define its (undirected, unweighted) sparsity graph $G_{A}(N, E)$:
$N=\{1, \ldots, m\}$
$e_{i j}=E \Longleftrightarrow A_{i j} \neq 0, \quad i, j=1, \ldots n$
Some facts about the sparsity graph:

- G_{A} is chordal if and only if Cholesky factorization of $P^{\top} A P$ has zero fill-in for some perturbation P
- Cliques of G_{A} correspond to dense submatrices of A

Graph representation of matrix sparsity

Another chordal sparsity graph, 5-diagonal matrix

or the arrow matrix sparsity graph

Graph representation of matrix sparsity

A non-chordal sparsity graph

Graph representation of matrix sparsity

A non-chordal sparsity graph

can be extended to a chordal sparsity graph

Chordal decomposition

S. Kim, M. Kojima, M. Mevissen and M. Yamashita, Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion, Mathematical Programming, 2011

Based on:

A. Griewank and Ph. Toint, On the existence of convex decompositions of partially separable functions, MPA 28, 1984 J. Agler, W. Helton, S. McCulough and L. Rodnan, Positive semidefinite matrices with a given sparsity pattern, LAA 107, 1988

See also:

L. Vandenberghe and M. Andersen, Chordal graphs and semidefinite optimization. Foundations and Trends in Optimization 1:241-433, 2015

Chordal decomposition

$G(N, E)$ - graph with $N=\{1, \ldots, n\}$ and max. cliques
C_{1}, \ldots, C_{p}.
$\mathbb{S}^{n}(E)=\left\{Y \in \mathbb{S}^{n}: Y_{i j}=0(i, j) \notin E \cup\{(\ell, \ell), \ell \in N\}\right.$
$\mathbb{S}_{+}^{C_{k}}=\left\{Y \succeq 0: Y_{i j}=0\right.$ if $\left.(i, j) \notin C_{k} \times C_{k}\right\}$

> Theorem 1: $G(N, E)$ is chordal if and only if for every $A \in \mathbb{S}^{n}(E), A \succeq 0$, it holds that $\exists Y^{k} \in \mathbb{S}_{+}^{C_{k}}(k=1, \ldots, p)$ s.t. $A=Y^{1}+Y^{2}+\ldots+Y^{p}$.

Every psd matrix is a sum of psd matrices that are non-zero only on maximal cliques.

So constraint $A(x) \succeq 0$ replaced by:
find matrices $Y^{k}(x) \succeq 0, k=1, \ldots, p$ that sum up to A.

Graph representation of matrix sparsity

Chordal sparsity graph, overlapping blocks

Chordal decomposition

Theorem 1: $G(N, E)$ is chordal if and only if

 for every $A \in \mathbb{S}^{n}(E), A \succeq 0$, it holds that $\exists Y^{k} \in \mathbb{S}_{+}^{C_{k}}(k=1, \ldots, p)$ s.t. $A=Y^{1}+Y^{2}+\ldots+Y^{p}$.Let $K=\left(\begin{array}{ccc}K_{1,1}^{(1)} & K_{1,2}^{(1)} & 0 \\ K_{2,1}^{(1)} & K_{2,2}^{(1)}+K_{1,1}^{(2)} & K_{1,2}^{(2)} \\ 0 & K_{2,1}^{(2)} & K_{2,2}^{(2)}\end{array}\right)$ with $K^{(1)}, K^{(2)}$ dense.
Then $K \succeq 0 \Leftrightarrow K=Y^{1}+Y^{2}$ such that

$$
Y^{1}=\left(\begin{array}{ccc}
K_{1,1}^{(1)} & K_{1,2}^{(1)} & 0 \\
K_{2,1}^{(1)} & K_{2,2}^{(1)}+S & 0 \\
0 & 0 & 0
\end{array}\right) \succcurlyeq 0, Y^{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & K_{2,2}^{(2)}-S & K_{1,2}^{(2)} \\
0 & K_{2,1}^{(2)} & K_{2,2}^{(2)}
\end{array}\right) \succcurlyeq 0
$$

Even if $K^{(1)}, K^{(2)}$ not dense, we just assume that S is dense.

Chordal decomposition

Let $A \in \mathbb{S}^{n}, n \geq 3$, with a sparsity graph $G=(N, E)$.
Let $N=\{1,2, \ldots, n\}$ be partitioned into $p \geq 2$ overlapping sets

$$
N=I_{1} \cup I_{2} \cup \ldots \cup I_{p}
$$

Define $I_{k, k+1}=I_{k} \cap I_{k+1} \neq \emptyset, \quad k=1, \ldots, p-1$.
Assume $A=\sum_{k=1}^{p} A_{k}$, with A_{k} only non-zero on I_{k}.

$$
\begin{aligned}
& \text { Corollary 1: } A \succeq 0 \text { if and only if } \\
& \exists S_{k} \in \mathbb{S}^{\prime} k, k+1 \\
& A=1, \ldots, p-1 \text { s.t. } \\
& A=\sum_{k=1}^{p} \widetilde{A}_{k} \text { with } \widetilde{A}_{k}=A_{k}-S_{k-1}+S_{k} \quad\left(S_{0}=S_{p}=[]\right) \\
& \text { and } \widetilde{A}_{k} \succeq 0(k=1, \ldots, p) .
\end{aligned}
$$

We can choose the partitioning $N=I_{1} \cup I_{2} \cup \ldots \cup I_{p}$!

Using the original theorem:

6 max. cliques of size 3,5 additional 2×2 variables
Using the corollary:

2 "cliques" of size 5,1 additional 2×2 variable

We can choose the partitioning $N=I_{1} \cup I_{2} \cup \ldots \cup I_{p}$!

When we know the sparsity structure of A, we can choose a "regular" partitioning.

Application: Topology optimization

Aim:
Given an amount of material, boundary conditions and external load f, find the material distribution so that the body is as stiff as possible under f.
$E(x)=\rho(x) E_{0}$ with $0 \leq \underline{\rho} \leq \rho(x) \leq \bar{\rho}$
E_{0} a given (homogeneous, isotropic) material

Topology optimization, example

Pixels-finite elements
Color-value of variable ρ, constant on every element

Equilibrium

Equilibrium equation:

$$
\begin{array}{ll}
K(\rho) u=f, & K(\rho)=\sum_{i=1}^{m} \rho_{i} K_{i}:=\sum_{i=1}^{m} \sum_{j=1}^{G} B_{i, j} \rho_{i} E_{0} B_{i, j}^{\top} \\
f:=\sum_{i=1}^{m} f_{i}
\end{array}
$$

Standard finite element discretization:
Quadrilateral elements
$\rho \ldots$. piece-wise constant
u. . . piece-wise bilinear (tri-linear)

TO primal formulation

$$
\begin{aligned}
& \min _{\rho \in \mathbb{R}^{m}, u \in \mathbb{R}^{n}} f^{T} u \\
& \text { subject to } \\
& \quad(0 \leq) \underline{\rho} \leq \rho_{i} \leq \bar{\rho}, \quad i=1, \ldots, m \\
& \quad \sum_{i=1}^{m} \rho_{i} \leq 1 \\
& K(\rho) u=f
\end{aligned}
$$

... large-scale nonlinear non-convex problem

SDP formulation of TO

The TO problem

$$
\begin{aligned}
& \rho \in \mathbb{R}^{m}, \min _{u \in \mathbb{R}^{n}, \gamma \in \mathbb{R}} \gamma \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\top} u \leq \gamma, \quad K(\rho) u=f \\
& \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \bar{\rho}, \quad i=1, \ldots, m
\end{aligned}
$$

can be equivalently formulated as a linear SDP

SDP formulation of TO

The TO problem

$$
\begin{aligned}
& \min _{\rho \in \mathbb{R}^{m},}^{u \in \mathbb{R}^{n}, \gamma \in \mathbb{R}} \begin{array}{l}
\gamma \\
\text { subject to }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f^{T} u \leq \gamma, \quad K(\rho) u=f \\
& \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \bar{\rho}, \quad i=1, \ldots, m
\end{aligned}
$$

can be equivalently formulated as a linear SDP:

$$
\begin{aligned}
& \min _{\rho \in \mathbb{R}^{m}, \gamma \in \mathbb{R}} \gamma \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\gamma & f^{T} \\
f & K(\rho)
\end{array}\right) \succeq 0 \quad \text { (positive semidefinite) } \\
& \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \bar{\rho}, \quad i=1, \ldots, m .
\end{aligned}
$$

SDP formulation of TO

The TO problem

$$
\begin{aligned}
& \min _{\rho \in \mathbb{R}^{m}, u \in \mathbb{R}^{n}, \gamma \in \mathbb{R}} \gamma \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& f^{T} u \leq \gamma, \quad K(\rho) u=f \\
& \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \bar{\rho}, \quad i=1, \ldots, m
\end{aligned}
$$

can be equivalently formulated as a linear SDP:

$$
\begin{aligned}
& \min _{\rho \in \mathbb{R}^{m}, \gamma \in \mathbb{R}} \gamma \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\gamma & f^{T} \\
f & K(\rho)
\end{array}\right) \succeq 0 \quad \text { (positive semidefinite) } \\
& \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \bar{\rho}, \quad i=1, \ldots, m .
\end{aligned}
$$

Helpful when vibration/buckling constraints present

Michal Kočvara (University of Birmingham)

SDP formulation of TO by decomposition

Both

$$
\left(\begin{array}{cc}
\gamma & f^{T} \\
f & \sum \rho_{i} K_{i}
\end{array}\right) \succeq 0
$$

and

$$
V(\hat{\lambda} ; \rho) \succeq 0
$$

are large matrix constraints dependent on many variables
... bad for existing SDP software
Can we replace them by several smaller constraints equivalently?

Chordal decomposition (recall)

Let $A \in \mathbb{S}^{n}, n \geq 3$, with a sparsity graph $G=(N, E)$.
Let $N=\{1,2, \ldots, n\}$ be partitioned into $p \geq 2$ overlapping sets

$$
N=I_{1} \cup I_{2} \cup \ldots \cup I_{p}
$$

Define $I_{k, k+1}=I_{k} \cap I_{k+1} \neq \emptyset, \quad k=1, \ldots, p-1$.
Assume $A=\sum_{k=1}^{p} A_{k}$, with A_{k} only non-zero on I_{k}.

$$
\begin{aligned}
& \text { Corollary } 1: A \succeq 0 \text { if and only if } \\
& \exists S_{k} \in \mathbb{S}^{\prime} k, k+1, k=1, \ldots, p-1 \text { s.t. } \\
& A=\sum_{k=1}^{p} \widetilde{A}_{k} \text { with } \widetilde{A}_{k}=A_{k}-S_{k-1}+S_{k} \quad\left(S_{0}=S_{p}=[]\right) \\
& \text { and } \widetilde{A}_{k} \succeq 0(k=1, \ldots, p) .
\end{aligned}
$$

We can choose the partitioning $N=I_{1} \cup I_{2} \cup \ldots \cup I_{p}$!

Using the corollary:

2 "cliques" of size 5, 1 additional 2×2 variable

When we know the sparsity structure of A, we can choose a regular partitioning.

SDP formulation of TO by DD

$$
\left(\begin{array}{cc}
K(\rho) & f \\
f^{\top} & \gamma
\end{array}\right) \succeq 0 \quad \text { and } \quad V(\hat{\lambda} ; \rho) \succeq 0
$$

are large matrix constraints dependent on many variables.
FE mesh, matrix $K(\rho)$ and its sparsity graph:

Chordal decomposition

$$
\left(\begin{array}{cccc}
K_{l /}^{(1)} & K_{l \Gamma}^{(1)} & 0 & 0 \\
K_{\Gamma l}^{(1)} & K_{\Gamma \Gamma}^{(1)}+K_{\Gamma \Gamma}^{(2)} & K_{\Gamma l}^{(2)} & 0 \\
0 & K_{l \Gamma}^{(2)} & K_{l l}^{(2)} & f \\
0 & 0 & f^{\top} & \gamma
\end{array}\right)=\left(\begin{array}{cccc}
K_{l l}^{(1)} & K_{l \Gamma}^{(1)} & 0 & 0 \\
K_{\Gamma l}^{(1)} & K_{\Gamma \Gamma}^{(1)}+S & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & K_{\Gamma \Gamma}^{(2)}-S & K_{\Gamma l}^{(2)} & 0 \\
0 & K_{l \Gamma}^{(2)} & K_{l l}^{(2)} & f \\
0 & 0 & f^{\top} & \gamma
\end{array}\right)
$$

Even though $K^{(1)}$ and $K^{(2)}$ are sparse, we need to assume that S is dense.

In this way, we can control the number and size of the maximal cliques and use the chordal decomposition theorem.

New result for arrow-type matrices: For the matrix inequality

$$
\left(\begin{array}{cc}
K(\rho) & f \\
f^{\top} & \gamma
\end{array}\right) \succeq 0
$$

the additional matrix variables S are rank-one; this further reduces the size of the solved SDP problem.

MK (2019): Decomposition of arrow type positive semidefinite matrices with application to topology optimization. arXiv:1911.09412

Numerical experiments

SDP codes tested: PENSDP, SeDuMi, SDPT3, Mosek
Results shown for Mosek: not the fastest for the original problem but has highest speedup

Mosek:

- version 8
- called from YALMIP
- difficult (for me) to control any options

Regular decomposition, 40×20 elements

Chordal decomposition

no of	no of	size of	no of	CPU		speedup	
matrices	vars	matrix	iters	total	per iter	total	/iter
1	801	1681	69	1045	15	1	1
8	3523	243	58	31	0.53		
32	5489	73	44	9.7	0.22		
50	6376	51	46	8.8	0.19		
200	11243	19	37	6.9	0.19		

Arrow decomposition

8	1032	243	70	28	0.40	37	38
32	1492	73	63	7.6	0.12	138	126
50	1764	51	64	7.1	0.11	147	137
200	3544	19	51	5.1	0.10	204	151
34	22997	$11 \ldots 260$	42	301	7	3	2

Automatic decomposition using software SparseCoLO

Regular decomposition, 120x60 elements

Chordal decomposition

no of matr	no of vars	size of matrix	no of iters	CPU total	per iter	speedup total
1	7200	14641	139	1045932	7524	1

estimated; 1045932 sec ≈ 6 days

"Best" decomposition (subdomain = 4 elements)

Arrow decomposition

problem	ORIGINAL			DECOMPOSED			speedup
	no of vars	size of matrix	CPU total	no of vars	size of matrix	$\begin{aligned} & \text { CPU } \\ & \text { total } \end{aligned}$	
40×20	801	1681	1045	3544	19	5	204
60×30	1801	3721	12468	8164	19	9	1370
80×40	3201	6561	78813	14684	19	17	4636
100×50	5001	10201	312560	23104	19	25	12502
120×60	7201	14641	1045932	33424	19	42	24903
140×70	9801	19881	2900382	45664	19	59	49159
160×80	12801	25921	7003213	59764	19	74	94638
complexity c-size ${ }^{\text {a }}$			$q=3.18$		$q=$. 0006	

times estimated; $7003213 \mathrm{sec} \approx 81$ days

CPU time, original versus decomposed

THE END

