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Dimensions in (linear) Semidefinite Optimization

min
x∈Rn

c>x

subject to
n∑

i=1

xiA
(k)
i − B(k) � 0 , k = 1, . . . ,p

where
x ∈ Rn, A(k)

i , B(k) ∈ Rm×m

Majority of SDP software
BAD . . . n large, m large many variables, big matrix

OK . . . n small, m large rare
GOOD . . . n large, m small many variables, small matrix
GOOD . . . n large, m small, p large many small matrix constraints
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Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can
we solve very large scale SDP problems?
• Use iterative solvers

SDPT3, PENSDP, Jacek Gondzio’s recent work
• Use a different algorithm

Bundle algorithm (Helmberg), Burer-Monteiro SDPA,
ADMM (Wolkowicz), Augmented Lagrangian (Rendl,
Malick, Toh-Sun,. . . )
• Reformulate BAD problems as GOOD problems
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PENSDP with an iterative solver

min
x∈Rn

c>x s.t.
n∑

i=1

xiAi − B � 0 , Ai ,B ∈ Rm×m

Problems with large n, small m (Kim Toh)
We have to solve repeatedly a dense n × n linear system.

direct iterative
problem n m CPU CPU CG/it
ham 8 3 4 16129 256 17701 30 1
ham 9 5 6 53761 512 mem 330 1
theta10 12470 500 12165 227 10
theta104 87845 500 mem 11953 25
theta12 17979 600 27565 254 8
theta123 90020 600 mem 10538 23
theta162 127600 800 mem 13197 13
sanr200-0.7 6 033 200 1146 30 12

mem. . . insufficient memory
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PENSDP with hybrid strategy

Use PCG till it works, then switch to Cholesky and return to
PCG, using the Ch-factor as a preconditioner.

Collection of chemical problems by M. Fukuda . . .

Average Dimacs error ≈ 1.0e − 7

problem n Cg-it Chol-it Nwt-it CPU-hy CPU-ch
NH2-.r14 1,743 921 4 69 526 4033
NH3+.r16 2,964 1529 3 72 2427 26634
NH4+.r18 4,239 1607 3 77 8931 > 100000
AlH.r20 7,230 2283 2 102 21720 ???
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Dimensions in (linear) Semidefinite Optimization

min
x∈Rn

c>x

subject to
n∑

i=1

xiA
(k)
i − B(k) � 0 , k = 1, . . . ,p

where
x ∈ Rn, A(k)

i , B(k) ∈ Rm×m

So we may want to replace
BAD . . . n large, m large, p=1

by
GOOD . . . n large, m small, p large many small matrix constraints
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Graph representation of matrix sparsity
For a sparse symmetric matrix A ∈ Rm×m define its (undirected,
unweighted) sparsity graph GA(N,E):
N = {1, . . . ,m}
eij = E ⇐⇒ Aij 6= 0, i , j = 1, . . .n

Some facts about the sparsity graph:
• GA is chordal if and only if Cholesky factorization of P>AP

has zero fill-in for some perturbation P
• Cliques of GA correspond to dense submatrices of A

0

0
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Graph representation of matrix sparsity
Another chordal sparsity graph, 5-diagonal matrix

0

0

or the arrow matrix sparsity graph

0

0
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Graph representation of matrix sparsity

A non-chordal sparsity graph

0

0
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Graph representation of matrix sparsity
A non-chordal sparsity graph

0

0

can be extended to a chordal sparsity graph

0

0

Michal Kočvara (University of Birmingham) DIMAP Seminar, May 2020 11 / 36



Chordal decomposition
S. Kim, M. Kojima, M. Mevissen and M. Yamashita, Exploiting
Sparsity in Linear and Nonlinear Matrix Inequalities via Positive
Semidefinite Matrix Completion, Mathematical Programming,
2011

Based on:

A. Griewank and Ph. Toint, On the existence of convex
decompositions of partially separable functions, MPA 28, 1984

J. Agler, W. Helton, S. McCulough and L. Rodnan, Positive
semidefinite matrices with a given sparsity pattern, LAA 107,
1988

See also:

L. Vandenberghe and M. Andersen, Chordal graphs and
semidefinite optimization. Foundations and Trends in
Optimization 1:241–433, 2015
Michal Kočvara (University of Birmingham) DIMAP Seminar, May 2020 12 / 36



Chordal decomposition
G(N,E) – graph with N = {1, . . . ,n} and max. cliques

C1, . . . ,Cp.

Sn(E) = {Y ∈ Sn : Yij = 0 (i , j) 6∈ E ∪ {(`, `), ` ∈ N}

SCk
+ = {Y � 0 : Yij = 0 if (i , j) 6∈ Ck × Ck}

Theorem 1: G(N,E) is chordal if and only if
for every A ∈ Sn(E), A � 0, it holds that
∃Y k ∈ SCk

+ (k = 1, . . . ,p) s.t. A = Y 1 +Y 2 + . . .+Y p.

Every psd matrix is a sum of psd matrices that are non-zero
only on maximal cliques.

So constraint A(x) � 0 replaced by:
find matrices Y k (x) � 0, k = 1, . . . ,p that sum up to A.
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Graph representation of matrix sparsity

Chordal sparsity graph, overlapping blocks

0

0
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Chordal decomposition
Theorem 1: G(N,E) is chordal if and only if
for every A ∈ Sn(E), A � 0, it holds that
∃Y k ∈ SCk

+ (k = 1, . . . ,p) s.t. A = Y 1 +Y 2 + . . .+Y p.

Let K =


K (1)

1,1 K (1)
1,2 0

K (1)
2,1 K (1)

2,2+K (2)
1,1 K (2)

1,2

0 K (2)
2,1 K (2)

2,2

 with K (1),K (2) dense.

Then K � 0⇔ K = Y 1 + Y 2 such that

Y 1=

K (1)
1,1 K (1)

1,2 0
K (1)

2,1 K (1)
2,2+S 0

0 0 0

 < 0, Y 2=

0 0 0
0 K (2)

2,2−S K (2)
1,2

0 K (2)
2,1 K (2)

2,2

 < 0

Even if K (1),K (2) not dense, we just assume that S is dense.
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Chordal decomposition
Let A ∈ Sn, n ≥ 3, with a sparsity graph G = (N,E).
Let N = {1,2, . . . ,n} be partitioned into p ≥ 2 overlapping sets

N = I1 ∪ I2 ∪ . . . ∪ Ip .

Define Ik ,k+1 = Ik ∩ Ik+1 6= ∅ , k = 1, . . . ,p − 1 .

Assume A =

p∑
k=1

Ak , with Ak only non-zero on Ik .

Corollary 1: A � 0 if and only if
∃Sk ∈ SIk,k+1 , k = 1, . . . ,p − 1 s.t.

A =

p∑
k=1

Ãk with Ãk = Ak−Sk−1+Sk (S0 = Sp = [ ])

and Ãk � 0 (k = 1, . . . ,p).
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We can choose the partitioning N = I1 ∪ I2 ∪ . . .∪ Ip !
Using the original theorem:

0

0

6 max. cliques of size 3, 5 additional 2× 2 variables

Using the corollary:

0

0

2 “cliques” of size 5, 1 additional 2× 2 variable
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We can choose the partitioning N = I1 ∪ I2 ∪ . . .∪ Ip !

When we know the sparsity structure of A, we can choose a
“regular” partitioning.
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Application: Topology optimization

Aim:

Given an amount of material, boundary conditions and external
load f , find the material distribution so that the body is as stiff
as possible under f .

E(x) = ρ(x)E0 with 0 ≤ ρ ≤ ρ(x) ≤ ρ

E0 a given (homogeneous, isotropic) material
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Topology optimization, example

Pixels—finite elements
Color—value of variable ρ, constant on every element
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Equilibrium

Equilibrium equation:

K (ρ)u = f , K (ρ) =
m∑

i=1

ρiKi :=
m∑

i=1

G∑
j=1

Bi,jρiE0B>i,j

f :=
m∑

i=1

fi

Standard finite element discretization:

Quadrilateral elements

ρ. . . piece-wise constant

u. . . piece-wise bilinear (tri-linear)
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TO primal formulation

min
ρ∈Rm, u∈Rn

f T u

subject to
(0 ≤) ρ ≤ ρi ≤ ρ, i = 1, . . . ,m

m∑
i=1

ρi ≤ 1

K (ρ)u = f

. . . large-scale nonlinear non-convex problem
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SDP formulation of TO
The TO problem

min
ρ∈Rm, u∈Rn, γ∈R

γ

subject to

f T u ≤ γ, K (ρ)u = f∑
ρi ≤ 1, ρ ≤ ρi ≤ ρ, i = 1, . . . ,m

can be equivalently formulated as a linear SDP:

min
ρ∈Rm, γ∈R

γ

subject to(
γ f T

f K (ρ)

)
� 0 (positive semidefinite)∑

ρi ≤ 1, ρ ≤ ρi ≤ ρ, i = 1, . . . ,m .

Helpful when vibration/buckling constraints present
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SDP formulation of TO by decomposition

Both (
γ f T

f
∑
ρiKi

)
� 0

and
V (λ̂; ρ) � 0

are large matrix constraints dependent on many variables
. . . bad for existing SDP software

Can we replace them by several smaller constraints
equivalently?
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Chordal decomposition (recall)
Let A ∈ Sn, n ≥ 3, with a sparsity graph G = (N,E).
Let N = {1,2, . . . ,n} be partitioned into p ≥ 2 overlapping sets

N = I1 ∪ I2 ∪ . . . ∪ Ip .

Define Ik ,k+1 = Ik ∩ Ik+1 6= ∅ , k = 1, . . . ,p − 1 .

Assume A =

p∑
k=1

Ak , with Ak only non-zero on Ik .

Corollary 1: A � 0 if and only if
∃Sk ∈ SIk,k+1 , k = 1, . . . ,p − 1 s.t.

A =

p∑
k=1

Ãk with Ãk = Ak−Sk−1+Sk (S0 = Sp = [ ])

and Ãk � 0 (k = 1, . . . ,p).
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We can choose the partitioning N = I1 ∪ I2 ∪ . . .∪ Ip !

Using the corollary:

0

0

2 “cliques” of size 5, 1 additional 2× 2 variable

When we know the sparsity structure of A, we can choose a
regular partitioning.
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SDP formulation of TO by DD
(

K (ρ) f
f> γ

)
� 0 and V (λ̂; ρ) � 0

are large matrix constraints dependent on many variables.

FE mesh, matrix K (ρ) and its sparsity graph:

0

0
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Chordal decomposition


K (1)

II K (1)
IΓ 0 0

K (1)
ΓI K (1)

ΓΓ +K (2)
ΓΓ K (2)

ΓI 0

0 K (2)
IΓ K (2)

II f
0 0 f> γ

=


K (1)
II K (1)

IΓ 0 0

K (1)
ΓI K (1)

ΓΓ +S 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0

0 K (2)
ΓΓ −S K (2)

ΓI 0

0 K (2)
IΓ K (2)

II f
0 0 f> γ


Even though K (1) and K (2) are sparse, we need to assume that
S is dense.
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In this way, we can control the number and size of the maximal
cliques and use the chordal decomposition theorem.

New result for arrow-type matrices: For the matrix inequality(
K (ρ) f
f> γ

)
� 0

the additional matrix variables S are rank-one; this further
reduces the size of the solved SDP problem.

——
MK (2019): Decomposition of arrow type positive semidefinite
matrices with application to topology optimization.
arXiv:1911.09412
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Numerical experiments

SDP codes tested: PENSDP, SeDuMi, SDPT3, Mosek

Results shown for Mosek: not the fastest for the original
problem but has highest speedup

Mosek:
– version 8
– called from YALMIP
– difficult (for me) to control any options
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Regular decomposition, 40x20 elements
Chordal decomposition

no of no of size of no of CPU speedup
matrices vars matrix iters total per iter total /iter

1 801 1681 69 1045 15 1 1

8 3523 243 58 31 0.53
32 5489 73 44 9.7 0.22
50 6376 51 46 8.8 0.19

200 11243 19 37 6.9 0.19

Arrow decomposition

8 1032 243 70 28 0.40 37 38
32 1492 73 63 7.6 0.12 138 126
50 1764 51 64 7.1 0.11 147 137

200 3544 19 51 5.1 0.10 204 151

34 22997 11. . . 260 42 301 7 3 2

Automatic decomposition using software SparseCoLO
by Kim, Kojima, Mevissen and Yamashita (2011)
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Regular decomposition, 120x60 elements

Chordal decomposition

no of no of size of no of CPU speedup
matr vars matrix iters total per iter total /iter

1 7200 14641 139 1045932 7524 1 1

200 51539 99 60 236 3.9
800 76977 33 50 129 2.6

1800 106903 19 47 114 2.4

Arrow decomposition

200 12904 99 82 89 1.1 11752 6933
800 21764 33 71 37 0.52 28268 14439

1800 33424 19 65 42 0.65 24903 11645

estimated; 1045932 sec ≈ 6 days
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“Best” decomposition (subdomain = 4 elements)

Arrow decomposition

ORIGINAL DECOMPOSED speedup
problem no of size of CPU no of size of CPU

vars matrix total vars matrix total

40×20 801 1681 1045 3544 19 5 204
60×30 1801 3721 12468 8164 19 9 1370
80×40 3201 6561 78813 14684 19 17 4636

100×50 5001 10201 312560 23104 19 25 12502
120×60 7201 14641 1045932 33424 19 42 24903
140×70 9801 19881 2900382 45664 19 59 49159
160×80 12801 25921 7003213 59764 19 74 94638

complexity c·sizeq q = 3.18 q = 1.0006

times estimated; 7003213 sec ≈ 81 days
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CPU time, original versus decomposed
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.

THE END
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