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Temporal graph theory: motivation

Real-world complex systems that are modeled with networks:

1 Transportation networks

2 Internet

3 Social networks

4 Mobile-phone networks

5 Food webs

6 Cattle movements network

7 Face-to-face interactions etc.

Model Networks Temporal Networks

Tools Graph theory ???
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Temporal graphs

Definition (Temporal Graph)

A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying graph and

λ : E → 2N \ {∅} is a discrete time-labeling function.
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Simple temporal graphs

Definition (Simple temporal graph)

A temporal graph (G,λ) is simple if

1 every edge e has exactly one timestamp, i.e. |λ(e)| = 1; and

2 all edges have pairwise different timestamps, i.e.
λ(e1) 6= λ(e2) for all e1, e2 ∈ E(G), e1 6= e2.

Remarks.

1 for our purposes the values of timestamps are not important,
so we will assume that the timestamps are from {1, 2, . . . ,m},
m = |E(G)|; or from [0, 1];

2 simple temporal graphs are also known as edge-ordered graphs
(Chvátal, Komlós, 1971).
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Temporal path

Let (G,λ) be a temporal graph. A pair (e, t), where e ∈ E(G) and
t ∈ λ(e), is called time edge of (G,λ).

Definition (Temporal path)

A sequence of time edges (v1v2, t1), (v2v3, t2), . . . , (vk−1vk, tk−1)
is a temporal path or temporal (v1, vk)-path in (G,λ), if

1 (v1, v2, . . . , vk) is a path in the underlying graph G; and

2 t1 < t2 < . . . < tk.
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Temporal connectivity

Definition (Temporal connectivity)

A temporal graph (G,λ) is temporally connected if for every pair
of vertices x, y ∈ V (G) the temporal graph contains

a temporal (x, y)-path; and

a temporal (y, x)-path.
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Temporally connected subgraph

Given a connected (static) graph G on n vertices there always
exists a spanning connected subgraph of G with n− 1 edges.

What about temporal graphs?

Question (Kempe, Kleinberg, and Kumar, 2000)

Given a temporally connected temporal graph (G,λ) on n vertices,
does there exist a spanning subgraph G′ of G with O(n) edges
such that the temporal graph (G′, λ′) is also temporally connected,
where λ′ is the restriction of λ on the edges of G′?
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On the positive side.

Any simple temporal clique (Kn, λ) has a temporally connected
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Random simple temporal graphs

Definition (probability space Dn,p)

A random simple temporal graph (G,λ) in Dn,p is obtained by

1 first sampling G from Gn,p;

2 and then sampling λ uniformly from the set of all bijections
E(G)→ {1, 2, . . . , |E(G)|}.

Remarks.

Lavrov, Loh, 2014, considered uniformly random orderings of
complete graphs.

De Silva, Molla, Pfender, Retter, Tait, 2015, considered
edge orderings of Gn,p.

Angel, Ferber, Sudakov, Tassion, 2018, considered
uniformly random edge orderings of Gn,p. [same as Dn,p]
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Connectivity in random temporal graphs

Question

For which values of p a random simple temporal graph from Dn,p

is temporally connected a.a.s.?

Definition (equivalent probability space Fn,p)

A random simple temporal graph (G,λ) in Fn,p is obtained by

1 first sampling G from Gn,p;

2 and then sampling the timestamps λ(e), e ∈ E(G) uniformly
and independently from [0, 1].
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From Temporal connectivity to Temporal source

Observation

Let (G,λ) be simple temporal graph, x be a vertex in (G,λ), and let
t ∈ [0, 1] be such that

1 every vertex in (G,λ) reaches x before time t; and

2 x reaches every vertex in (G,λ) after time t.

Then (G,λ) is temporally connected.

Definition (temporal source (sink))

A vertex x is a temporal source (resp. temporal sink) in a temporal graph
(G,λ) if every vertex in (G,λ) can be reached from x (resp. can reach
x) via temporal path.
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From Temporal connectivity to Temporal source

Let (G,λ) = Fn,p and let

1 (G1, λ1) is the subgraph of (G,λ) spanned by the edges with
timestamps < 0.5; and

2 (G2, λ2) is the subgraph of (G,λ) spanned by the edges with
timestamps > 0.5;

Observations

1 if x is a temporal sink in (G1, λ1) and a temporal source in
(G2, λ2), then (G,λ) is temporally connected;

2 both (G1, λ1) and (G2, λ2) can be seen as elements of Fn,p/2.
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From Temporal connectivity to Temporal source

Let γn,p (resp. σn,p) be the probabilities that an arbitrary vertex in
a random temporal graph from Fn,p is a temporal source (resp.
temporal sink).

Observation. γn,p = σn,p.

Follows from
1 a vertex is a temporal source in (G,λ) iff it is a temporal sink

in (G,λ′), where λ′(e) = 1− λ(e);

2 the mapping (α1, α2, . . . , αm) 7→ (1− α1, 1− α2, . . . , 1− αm)
is a bijection.

Lemma

Let p = p(n). If γn,p/2 → 1 as n→∞, then a random temporal
graph from Fn,p is temporally connected a.a.s.
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Temporal source: 2-hop approach

Let x be an arbitrary vertex in (G,λ). For y, z ∈ V (G), let

1 Ez be the event that x reaches z; and

2 Eyz be the event that x reaches z in exactly two steps via y.
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Temporal source: 2-hop approach

Let x be an arbitrary vertex in (G,λ). For y, z ∈ V (G), let
1 Ez be the event that x reaches z; and
2 Eyz be the event that x reaches z in exactly two steps via y.

Let p1 := P(Ez) and p2 := P(Eyz) = p2/2.

γn,p = 1− P

( ⋃
z 6=x

Ez

)
≥ 1−

∑
z 6=x P(Ez) = 1− (n− 1)p1

P(Ez) ≤ P

( ⋂
y 6=x,z

Eyz

)
=

∏
y 6=x,z

P(Eyz) =
(
1− p2/2

)n−2 ≤ e− p2(n−2)
2

Lemma

γn,p = 1− o(1), when p = 2
√

log n/n.
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1 Ez be the event that x reaches z; and
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Temporal source: foremost tree approach

Definition (Foremost temporal path)

A temporal (a, b)-path is foremost if it arrives to b as early as
possible.
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Temporal source: foremost tree approach

Definition (Foremost tree)

Let (G,λ) be a temporal graph. A temporal spanning subtree
(T, λ′) of (G,λ) rooted at vertex v is a foremost tree for v, if every
path in (T, λ′) from v to another vertex w is a foremost
(v, w)-path in (G,λ).
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Temporal source: foremost tree approach

Definition (Foremost tree)

Let (G,λ) be a temporal graph. A temporal spanning subtree
(T, λ′) of (G,λ) rooted at vertex v is a foremost tree for v, if every
path in (T, λ′) from v to another vertex w is a foremost
(v, w)-path in (G,λ).
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Temporal source: foremost tree approach

Observation

Let v be a temporal source in a temporal graph (G,λ). Then there
exists a foremost tree for v in (G,λ).

Algorithm Foremost Tree

Input: Temporal graph (G,λ); temporal source v in (G,λ).
Output: Foremost tree for v.
1: T ← ({v}, ∅)
2: while V (G)− V (T ) 6= ∅ do
3: Let e be an edge that extends T and has the minimum timestamp.

4: Add e to T
return (T, λ′)
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Temporal source: foremost tree approach

The following model is equivalent to Fn,p:

1 sample a random graph (Kn, λ) from Fn,1;

2 remove from (Kn, λ) all edges with timestamps > p.

Idea:

1 Run Foremost Tree algorithm from an arbitrary vertex in
a random graph Fn,1.

2 Analyze the smallest value p such that all edges of the
constructed tree have timestamps at most p.
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Temporal source: foremost tree approach

Outline of the analysis:

1 Let e1, e2, . . . en−1 be the edges of the output formost tree in
the order they are added to the tree.

2 Then λ(e1) < λ(e2) < . . . < λ(en−1).
Hence, we are interested in the smallest p such that
λ(en−1) ≤ p.

3 Let X1 = λ(e1) and Xi = λ(ei)− λ(ei−1), 2 ≤ i ≤ n− 1.

4 Then Y =
∑n−1

i=1 Xi = λ(en−1).

5 We show

1 E[Y ] = 2 logn
n (1 + o(1));

2 Y concentrates around its expected value E[Y ].
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Temporal source: foremost tree approach

Theorem (Sharp threshold for Temporal Source)

There exists a function ε(n) = o(1) such that an arbitrary vertex in
a random temporal graph Fn,p is

1 a temporal source a.a.s. if p > 2 logn
n (1 + ε(n)); and

2 not a temporal source a.a.s. if p < 2 logn
n (1− ε(n)).

Theorem (Threshold for Temporal Connectivity)

There exists a function ε(n) = o(1) such that a random temporal
graph Fn,p is

1 temporally connected a.a.s. if p > 4 logn
n (1 + ε(n)); and

2 not temporally connected a.a.s. if p < 2 logn
n (1− ε(n)).
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Thank you for your attention!


