Playing games with transmissible animal disease

Jonathan Cave Research Interest Group 6 May 2008

THE UNIVERSITY OF WARVICK

Outline

- The nexus of game theory and epidemiology
- Some simple disease control games
 - A vaccination game with perceived risk
 - A game of interdependent risks
- Towards an elaborated structure
 - Dynamics
 - Differentiated interaction structures (layered) networks
 - The evolution of conventions
 - Coevolution of structure and behaviour
- Different, differentiated diseases

The connection...

- Game theory is concerned with strategic behaviour reasoned (rational) choices made by interdependent agents:
 - Players those who make conscious choices
 - Strategies what the players choose
 - Payoffs –players' preferences over combined choices (note: sometimes explicit 'rules' translate choices into outcomes over which players have preferences)
 - Information what players know about these things
- Epidemiology provides various ways to formalise dynamic interdependence
- Basis of a game-theoretic analysis can be supplied by an epidemiological model
 - Payoffs affected by disease prevalence, incidence and (e.g.) market and welfare impact
 - Strategies (for controlling disease, risks, impacts, etc.) determined by disease characteristics
 - Information influenced by observed disease progress, choices (e.g. to notify, call in vets, etc.)
- Strategic behaviour in turn affects epidemiology
 - Animal movements, contact
 - Vaccination, culling, etc.
- This talk describes some simple models and their elaboration
- It tries to find common ground by using semi-mathematical language
- Hope is to get feedback on what's already old hat, what results are interesting, what extensions are promising...

Game theory basics

- Player i's payoffs denoted $U_i(\sigma_i, \sigma_{-i}, \omega)$, where $\sigma_i(\sigma_{-i})$ are the strategies of I (and others) and ω is the *state* (not used in what follows)
- σ^* is a Nash equilibrium at ω iff for all i and all $s_i \neq \sigma_i^*$, $U_i(\sigma^*, \omega) \ge U_i(s_i, \sigma_i^*, \omega) = U_i(\sigma^*|s_i, \omega)$ (mutual best replies)
- Game is:
 - symmetric if the strategy spaces and payoffs for each player are the same
 - aggregate if each player's payoff depends on its own strategy and the distribution of other players' strategies across the strategy set (the numbers playing each other strategy)
 - *Potential* if there is a real-valued function P of the strategies whose joint maxima identify the Nash equilibria (Formally, for each I, σ and s_i: P(σ)-P(σ |s_i) = U_i(σ)-U_i(σ |s_i)
 - Example 1: a *network* of players playing 2-person games; i gets the average (or total) payoff from all his pairwise interactions
 - Example 2: a *market game* where the payoff to player i depends on his output and the aggregate of others' output
- Other solution concepts defined in terms of stability under specified dynamics:
 - Evolutionary stability: no sufficiently good deviation will be copied
 - Convergent stability: if many players adopt Q as an alternative to an equilibrium P and if payoff increases as players move closer to P than Q
 - Replicator dynamics: the prevalence of strategies that do best among those currently played increases
 - Players chosen at random select best replies to others' strategies with high (but < 1) probability

A simple vaccination game

- In deciding whether to vaccinate, farmers consider
 - (perceived) risk/cost of morbidity from vaccination (r_V)
 - (perceived) probability of infection ($\pi_{p_{j}}$ which depends on the uptake level p)
 - (perceived) risk/cost of morbidity from infection (r_l)
- Decisions are indirectly influenced by others because the sum of others' decisions determines vaccine coverage
- This simple model shows how risk/cost perception influences expected vaccine uptake and coverage and the role played by pathogens' epidemiological characteristics
- All individuals have the same herd size, information Wand Way to assess risk/costs circulate

Static results

- Generally get stable convergence to homogeneous Nash equilibrium P*
- Expected variation in behaviour is here replaced by uniform mixed strategies: consider a 'combination' σ of strategies P* and Q
 - In $\sigma,$ fractions μ and 1- μ play P* and an alternative Q
 - (Uptake/coverage) $p = \mu P^* + (1-\mu)Q$
 - Payoff to playing P* is U(P*, σ , μ) = V(P*, μ P* + (1- μ)Q)
 - Payoff to playing Q is U(Q, σ , μ) = V(Q, μ P* + (1- μ)Q)
 - Advantage of playing P* rather than Q is $A(P^*,Q) = (\pi_p \rho)(P^*-Q)$
- Lemma: For any given ρ, there is a unique P* s.t. A(P*,Q) > 0 for all Q ≠ P* and all μ > 0.
 - Letting $\mu \rightarrow 0$ shows that $P^*(\rho)$ is a Nash equilibrium
 - If P and Q are not Nash, but $|P^*-P| < |P^*-Q|$ then A(P,Q)>0 (stability)
- *Theorem*: if $\rho \ge \pi_0$ then the best reply to p = 0 is 0. Because higher p means lower π_p , the best reply to any p > 0 is also $P_i = 0$, and the unique equilibrium is $P^* = 0$. By the same token if if $\rho \ge \pi_1$ then the unique equilibrium is $P^* = 1$. Otherwise, there is a unique internal solution where all players use a strategy P^* such that $\pi_{P^*} = \rho$.

WARWICK

Adding the SIR model

• We add a standard SIR dynamic model:

$$\dot{S} = \delta (1-p) - \beta SI - \delta S$$
$$\dot{I} = \beta SI - \gamma I - \delta I$$
$$\dot{R} = \delta p + \gamma I - \delta R$$

- δ = mean birth/death rate, β = mean transmission rate, γ = 1/(infectious period), p = uptake.
 - Assumes symmetrical mortality, no infection before (not) being vaccinated, etc.
 - Steady-state uptake = coverage.
 - Third equation is redundant (population balance).
 - Rescale to $\tau = t/\gamma$ (time in mean infectious period units), $\phi = \delta/\gamma$ (infectious period in mean lifetimes) and $R_0 = \beta/(\gamma+\delta)$ (2° cases spawned by each 1° case):

$$\frac{\partial S}{\partial \tau} = \phi (1-p) - R_0 (1+\phi) SI - \phi S$$
$$\frac{\partial I}{\partial \tau} = R_0 (1+\phi) SI - (1+\phi) I$$

WARV

Long-term behaviour

• Whether the disease becomes endemic or disappears depends on the coverage relative to a critical threshold: $\max \{R_0 - 1, 0\}$

$$\widehat{p} = \frac{\max\left\{R_0 - 1, 0\right\}}{R_0}$$

If $p \ge \hat{p}$, the system converges to $S^* = 1$; otherwise, it converges to the endemic steady state

$$S^{E} = 1 - \hat{p}; I^{E} = \frac{\phi(\hat{p} - p)}{1 + \phi}$$
 so henceforth we assume $R_{0} < 1$ and $p < \frac{\beta - \gamma - \delta}{\beta}$

- At coverage p, the long-term probability of infection for an unvaccinated animal depends on the relative rate at which it dies or becomes infected $\pi_p = \frac{R_0 (1+\phi) S^E I^E}{R_0 (1+\phi) S^E I^E + \phi S^E} = 1 \frac{1}{R_0 (1-p)}$
- This is independent of ϕ and thus of the birth/death rate and the infectious period.
- There is a mixed strategy (imperfect uptake) equilibrium if $\pi_1 < \rho < \pi_0$, or

$$\rho < \frac{R_0 - 1}{R_0}$$
, so the equilibrium $P^* = 1 - \frac{1}{R_0 (1 - \rho)}$

WARWICK

An illustration: impact of increasing R₀ (2° cases per 1° case)

- The LHS shows equilibrium uptake as a function of relative risk. Horizontal lines are 'elimination thresholds' limit is step function at $\rho = 1$.
- The RHS shows the impact of an upward shift in risk perception (from <1 to the new value ρ). The upper part is the incentive to switch vaccination practice; lower part is corresponding change in uptake (from old to new equilibrium P) as functions of new risk level.
- This shows that behaviour is more responsive as $\beta/(\delta+\gamma)$ increases; and that recovery is slower than collapse

WARWICK

Implications

- For any *positive* perceived relative risk (ρ>0), equilibrium uptake falls below the critical threshold and disease will become endemic unless there are additional compulsions or incentives to vaccinate.
- If vaccination is seen as *riskier* than infection (ρ>1) no farmers will vaccinate in equilibrium. The minimal perceived risk above which there will be no vaccination is 1-1/R₀.
- This abstracts from heterogeneity, impact of actual course of disease and political/media responses on risk perceptions, risk aversion, etc..
- During crises, perceived risks will rise; increased risk of infection "morbidity" have similar effects; if they cross the π_0 threshold, the impacts can be

A second model: interactive risk

- This model is based on the notion that precautions have spill over effects, which affect incentives to take care.
- Results depend on the direction of externalities (does A's precaution increase or decrease B's risk), the effectiveness of A's precaution for A's risk and the 'aggregation technology'
- A player's risk depends (in this simple model) on his own precaution and a function of everyone else's; positive spillovers may be 'best effort' (max), 'weakest link' (min) or anything in between.
- The analysis connects two strands in the literature
 - 'Tipping equilibrium' if failure to take precautions reduces others' incentives, safety may collapse; if taking precautions increases others' incentives, high-security cascade may result. Allows 'leadership'
 - Supermodularity (strategic complements) and submodularity (strategic substitutes) affects equilibrium existence, uniqueness, optimality

A classification scheme and summary analysis

- **Case I:** Partial effectiveness, negative externalities A's precautions reduce everyone's risk. The reduction is not complete, so A knows that others' free-riding is costly to him.
 - Single or multiple (homogeneous) equilibria with tipping
 - One equilibrium dominates (high-precaution?), unique equilibrium may be optimal (e.g. if cost so low that each would want to take care even if no-one else did), but may not be (e.g. if costs so high that no-one wants to take care alone)
 - Number taking precautions
 socially optimal number
- **Case II:** Complete effectiveness, negative externalities A's precaution completely immunises him (and gives others some benefit).
 - Typically unique equilibrium (no tipping), but incentive to take care falls as others do (or follow suit)
 - Either full or no-precaution equilibrium could be efficient, but no guarantee
- **Case III:** Positive externalities A's investment increases others' return and 'crowds out' their investment
 - Free-riding prevents multiple equilibrium
- Key is whether A's precaution encourages or discourages others and reciprocal impact on A

A more careful analysis – 2x2 case

- Game played by agents choosing one of two strategies.
 Payoff depends on individual, aggregate choice.
- Simple case is each agent playing 'against' others to whom it is linked – payoff is average based on No precaution A, A Precaution C, B
- Payoff externalities:

•	Substitutes if C-A < D-B
---	--------------------------

- Complements if C-A > D-B
- Precaution is *risk dominant* if A+B<C+D; no-precaution is risk-dominant if A+B>C+D
- Equilibrium regimes:

Equilibrium	Description
Ι	Unique no precaution
II	Pure partial compliance
III	Unique full precaution
IV	2 uniform conventions

WARWICK

External:ty	Impact of other's precaution on:		
	Unprotected	Protected	
α	Good	Good	
β	Guud	Bad	
Y	Bad	Good	
δ	Bad	Bađ	

Conventions – the 'local evolution' model

- Each farm is 'near' others as described by a graph Γ a set of epidemiologically linked pairs (ij)
- Farm i's neighbourhood is $N_i(\Gamma) = \{j: ij \in \Gamma\}$
- i is chosen at random to rethink its behaviour: it chooses
 - A best reply to strategies of $N_i(\Gamma)$ with probability 1- ε > 0
 - A 'mistake' with probability $\boldsymbol{\epsilon}$
- The resulting Markov process converges almost surely
 - To a risk-dominant equilibrium if there are two strategies per farm and all farms are linked to all other farms
 - To a generalised stable strategy if there are more than 2 strategies
 - To a (possibly) diverse allocation if the network has e.g. clusters
- Dynamics show tipping, cascades and (temporary) cycles

A classification of 2x2 case

Best	\rightarrow	Worst	Equil	Pareto	Risk Dom.	Payoff	Welfare
А	ВС	D		1	Y	α	Y
А	ΒD	С	I	1	Y	γ	Y
А	СВ	D	I	1	Y	α	Y
А	C D	В	IV	1:2	?	α	1:2
А	DΒ	С	IV	1:2	Y	γ	1:2
А	DC	В	IV	1:2	?	γ	1:2
В	A C	D	I	1	Y	β	?
В	A D	С	I	1	Y	δ	?
В	CΑ	D	Ш	2	na	β	Y
В	СD	А	Ш	2	na	β	Y
В	DΑ	С	I	0	Y	δ	Ν
В	DC	А	Ш	2	na	δ	?
С	ΑB	D	Ш	2	na	α	?
С	A D	В	111	0	Ν	α	Ν
С	ΒΑ	D	11	2	na	β	Y
С	ΒD	А	11	2	na	β	Y
С	DΑ	В	111	1	Y	α	?
С	DΒ	А	111	1	Y	β	?
D	ΑΒ	С	IV	1:2	?	γ	1:2
D	A C	В	IV	1:2	Y	γ	1:2
D	ΒΑ	С	IV	1:2	?	δ	1:2
D	ВС	А		1	Y	δ	Y
D	CΑ	В		1	Y	γ	Y
D	СВ	А		1	Y	δ	Y

A more general model

- N interdependent agents (i)
 - p_i risk faced by agent i
 - L_i loss incurred if risk 'fires'
 - c_i cost of precaution (prevents direct loss)
 - X_i strategy (N, P (precaution))
 - $I_i({K}, X_i)$ expected indirect cost to i when {K} choose P and i chooses X_i
 - Only direct losses to i affect others so P protects others perfectly
- Expected payoffs to i's choice:
 - P: $c_i + I_i({K}, P)$
 - N: $p_iL_i + (1-\alpha p_i)I_i(\{K\},N) \alpha$ is the non-additivity of harm, running from $\alpha = 0$ (suffer both direct and indirect damage) to $\alpha = 1$ (suffer either direct or indirect damage only go bankrupt once⁽ⁱ⁾)
 - Indifferent if $c_i = C^*(\{K\}) = p_i L_i + (1 \alpha p_i) I_i(\{K\}, N) I_i(\{K\}, P)$ (take precaution if cost lower than $C^*(\{K\})$)
- Different situations
 - Case I: $I_i({K}, P) = I_i({K}, N) = I_i({K})$ and $\alpha = 1$ so $C^*({K}) = p_i[L_i I_i({K})]$.
 - I_i falls as {K} gets bigger higher I_i means lower C*
 - C* rises, and tipping is possible.
 - Case II: $I_i({K}, P) = 0$ and $\alpha = 1$ so $C^* = p_iL_i + (1-p_i)I_i({K}, N)$
 - C* falls as {K} expands (I_i raises the critical cost)
 - Case III: $I_i({K}, P) = I_i({K}, N) = I_i({K})$ so $C^*({K}) = p_i[I_i({K}) Investment_i]$
 - C* again falls as {K} expands, but for a different reason (free-ride on others' investments

Herd behaviour

- Consider a Nash equilibrium in which Xi = N, all i (no precaution). A 'critical mass' is a coalition {K} such that if X_i = P for all i in K then C_j*({K}) ≥ c_j for all j not in K.
- [skipped for brevity results on existence, characterisation of smallest minimal critical mass coalition]

A Case I example

- Let r_{ij} be the risk that infection from i transfers to j (r_{ij} is the direct risk at farm i) with (common) loss L
- (P,P) is Pareto optimal in an area that strictly includes the shaded region (so it is optimal whenever it is an equilibrium)
- In the central area, tipping is possible
- With more than three farms, cascades are possible (following the costs)

	No precaution	Precaution
No precaution	$-[r_{11}+(1-r_{11})r_{21}]L, -[r_{22}+(1-r_{22})r_{12}]L$	$-r_{11}L$, $-c_2-r_{12}L$
Precaution	$-c_1-r_{21}L, -r_{22}L$	-c ₁ , -c ₂

C ₂ ↑	(P,N)	(N,N)	Dominant (N,N)
r ₂₂ =	(P,P)	(N,N) and (P,P)	(N,N)
¹ 22(1 ⁻¹ 12)⊏	Dominant (P,P)	(P,P)	(N,P)
	r ₁₁ (1-	₁L C ₁ →	

Future directions

- Coevolution of structure and behaviour
- Path-dependence
- Degrees of 'public good'-ness (between the full group and binary network models)
- Etc.

