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Outline

• The nexus of game theory and epidemiology

• Some simple disease control games

– A vaccination game with perceived risk

– A game of interdependent risks

• Towards an elaborated structure

– Dynamics

– Differentiated interaction structures - (layered) networks

– The evolution of conventions

– Coevolution of structure and behaviour

• Different, differentiated diseases
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The connection…
• Game theory is concerned with strategic behaviour - reasoned (rational) choices

made by interdependent agents:
– Players – those who make conscious choices

– Strategies – what the players choose

– Payoffs –players’ preferences over combined choices (note: sometimes explicit ‘rules’
translate choices into outcomes over which players have preferences)

– Information – what players know about these things

• Epidemiology provides various ways to formalise dynamic interdependence

• Basis of a game-theoretic analysis can be supplied by an epidemiological model
– Payoffs affected by disease prevalence, incidence and (e.g.) market and welfare impact

– Strategies (for controlling disease, risks, impacts, etc.) determined by disease
characteristics

– Information influenced by observed disease progress, choices (e.g. to notify, call in
vets, etc.)

• Strategic behaviour in turn affects epidemiology
– Animal movements, contact

– Vaccination, culling, etc.

• This talk describes some simple models and their elaboration

• It tries to find common ground by using semi-mathematical language

• Hope is to get feedback on what’s already old hat, what results are interesting,
what extensions are promising…
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Game theory basics
• Player i’s payoffs denoted Ui(i,-i,), where i (-i) are the strategies of I (and

others) and  is the state (not used in what follows)
• * is a Nash equilibrium at  iff for all i and all si ≠ i*,

Ui(*,) > Ui(si,-i*,) = Ui(*|si,) (mutual best replies)
• Game is:

– symmetric if the strategy spaces and payoffs for each player are the same
– aggregate if each player’s payoff depends on its own strategy and the distribution of

other players’ strategies across the strategy set (the numbers playing each other
strategy)

– Potential if there is a real-valued function P of the strategies whose joint maxima identify
the Nash equilibria (Formally, for each I,  and si: P()-P(|si) = Ui()-Ui(|si)

– Example 1: a network of players playing 2-person games; i gets the average (or total)
payoff from all his pairwise interactions

– Example 2: a market game where the payoff to player i depends on his output and the
aggregate of others’ output

• Other solution concepts defined in terms of stability under specified dynamics:
– Evolutionary stability: no sufficiently good deviation will be copied
– Convergent stability: if many players adopt Q as an alternative to an equilibrium P and if

payoff increases as players move closer to P than Q
– Replicator dynamics: the prevalence of strategies that do best among those currently

played increases
– Players chosen at random select best replies to others’ strategies with high (but < 1)

probability
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A simple vaccination game

• In deciding whether to vaccinate, farmers consider

– (perceived) risk/cost of morbidity from vaccination (rV)

– (perceived) probability of infection (p, which depends on
the uptake level p)

– (perceived) risk/cost of morbidity from infection (rI)

• Decisions are indirectly influenced by others
because the sum of others’ decisions determines
vaccine coverage

• This simple model shows how risk/cost perception
influences expected vaccine uptake and coverage
and the role played by pathogens’ epidemiological
characteristics

• All individuals have the same herd size, information
and way to assess risk/costs
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Static results
• Generally get stable convergence to homogeneous Nash equilibrium P*

• Expected variation in behaviour is here replaced by uniform mixed
strategies: consider a ‘combination’  of strategies P* and Q

– In , fractions  and 1- play P* and an alternative Q

– (Uptake/coverage) p = P* + (1-)Q

– Payoff to playing P* is U(P*, , ) = V(P*, P* + (1-)Q)

– Payoff to playing Q is U(Q, , ) = V(Q, P* + (1-)Q)

– Advantage of playing P* rather than Q is A(P*,Q) = (p – )(P*-Q)

• Lemma: For any given , there is a unique P* s.t. A(P*,Q) > 0 for all Q ≠
P* and all  > 0.
– Letting →0 shows that P*() is a Nash equilibrium
– If P and Q are not Nash, but |P*-P| < |P*-Q| then A(P,Q)>0 (stability)

• Theorem: if  > 0 then the best reply to p = 0 is 0. Because higher p
means lower p, the best reply to any p > 0 is also Pi = 0, and the unique
equilibrium is P* = 0. By the same token if if  > 1 then the unique
equilibrium is P* = 1. Otherwise, there is a unique internal solution where
all players use a strategy P* such that P* = .
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Adding the SIR model
• We add a standard SIR dynamic model:

•  = mean birth/death rate,  = mean transmission rate,  = 1/(infectious period),

p = uptake.

– Assumes symmetrical mortality, no infection before (not) being vaccinated, etc.

– Steady-state uptake = coverage.

– Third equation is redundant (population balance).

– Rescale to  = t/ (time in mean infectious period units),  = / (infectious period in
mean lifetimes) and R0 = /(+) (2o cases spawned by each 1o case):
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Long-term behaviour
• Whether the disease becomes endemic or disappears depends on the

coverage relative to a critical threshold:

• At coverage p, the long-term probability of infection for an unvaccinated
animal depends on the relative rate at which it dies or becomes infected

• This is independent of  and thus of the birth/death rate and the
infectious period.

• There is a mixed strategy (imperfect uptake) equilibrium if 1<<0, or
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An illustration: impact of increasing R0 (2o cases per 1o case)

• The LHS shows equilibrium uptake as a function of relative risk. Horizontal lines
are ‘elimination thresholds’ – limit is step function at  = 1.

• The RHS shows the impact of an upward shift in risk perception (from <1 to the
new value ). The upper part is the incentive to switch vaccination practice; lower
part is corresponding change in uptake (from old to new equilibrium P) as
functions of new risk level.

• This shows that behaviour is more responsive as /(+) increases; and that
recovery is slower than collapse
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Implications

• For any positive perceived relative risk (>0),
equilibrium uptake falls below the critical threshold
and disease will become endemic unless there are
additional compulsions or incentives to vaccinate.

• If vaccination is seen as riskier than infection (>1)
no farmers will vaccinate in equilibrium. The minimal
perceived risk above which there will be no
vaccination is 1-1/R0.

• This abstracts from heterogeneity, impact of actual
course of disease and political/media responses on
risk perceptions, risk aversion, etc..

• During crises, perceived risks will rise; increased
risk of infection “morbidity” have similar effects; if
they cross the 0 threshold, the impacts can be
profound.
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A second model: interactive risk
• This model is based on the notion that precautions have spill

over effects, which affect incentives to take care.

• Results depend on the direction of externalities (does A’s
precaution increase or decrease B’s risk), the effectiveness
of A’s precaution for A’s risk and the ‘aggregation technology’

• A player's risk depends (in this simple model) on his own
precaution and a function of everyone else’s; positive
spillovers may be ‘best effort’ (max), ‘weakest link’ (min) or
anything in between.

• The analysis connects two strands in the literature
– ‘Tipping equilibrium’ - if failure to take precautions reduces others’

incentives, safety may collapse; if taking precautions increases others’
incentives, high-security cascade may result. Allows ‘leadership’

– Supermodularity (strategic complements) and submodularity (strategic
substitutes) – affects equilibrium existence, uniqueness, optimality
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A classification scheme and summary analysis
• Case I: Partial effectiveness, negative externalities – A’s precautions

reduce everyone’s risk. The reduction is not complete, so A knows that
others’ free-riding is costly to him.
– Single or multiple (homogeneous) equilibria with tipping
– One equilibrium dominates (high-precaution?), unique equilibrium may be

optimal (e.g. if cost so low that each would want to take care even if no-one
else did), but may not be (e.g. if costs so high that no-one wants to take care
alone)

– Number taking precautions < socially optimal number

• Case II: Complete effectiveness, negative externalities – A’s precaution
completely immunises him (and gives others some benefit).
– Typically unique equilibrium (no tipping), but incentive to take care falls as

others do (or follow suit)
– Either full or no-precaution equilibrium could be efficient, but no guarantee

• Case III: Positive externalities – A’s investment increases others’ return
and ‘crowds out’ their investment
– Free-riding prevents multiple equilibrium

• Key is whether A’s precaution encourages or discourages others – and
reciprocal impact on A



Draft – do not cite or
circulate

A more careful analysis – 2x2 case

• Game played by agents choosing one of two strategies.
Payoff depends on individual, aggregate choice.

• Simple case is each agent playing ‘against’ others to whom it
is linked – payoff is average based on

• Payoff externalities:

• Substitutes if C-A < D-B

• Complements if C-A > D-B

• Precaution is risk dominant if A+B<C+D;
no-precaution is risk-dominant if A+B>C+D

• Equilibrium regimes:
Equilibrium Description

I Unique no precaution
II Pure partial compliance
III Unique full precaution
IV 2 uniform conventions
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Conventions – the ‘local evolution’ model

• Each farm is ‘near’ others as described by a graph  – a set
of epidemiologically linked pairs (ij)

• Farm i’s neighbourhood is Ni() = {j: ij }

• i is chosen at random to rethink its behaviour: it chooses

– A best reply to strategies of Ni() with probability 1- > 0

– A ‘mistake’ with probability 

• The resulting Markov process converges almost surely
– To a risk-dominant equilibrium if there are two strategies per farm and

all farms are linked to all other farms

– To a generalised stable strategy if there are more than 2 strategies

– To a (possibly) diverse allocation if the network has e.g. clusters

• Dynamics show tipping, cascades and (temporary) cycles
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A classification of 2x2 case
Best Worst Equil Pareto Risk Dom. Payoff Welfare

A B C D I 1 Y a Y
A B D C I 1 Y g Y
A C B D I 1 Y a Y
A C D B IV 1:2 ? a 1:2
A D B C IV 1:2 Y g 1:2
A D C B IV 1:2 ? g 1:2
B A C D I 1 Y b ?
B A D C I 1 Y d ?
B C A D II 2 na b Y
B C D A II 2 na b Y
B D A C I 0 Y d N
B D C A II 2 na d ?
C A B D II 2 na a ?
C A D B III 0 N a N
C B A D II 2 na b Y
C B D A II 2 na b Y
C D A B III 1 Y a ?
C D B A III 1 Y b ?
D A B C IV 1:2 ? g 1:2
D A C B IV 1:2 Y g 1:2
D B A C IV 1:2 ? d 1:2
D B C A III 1 Y d Y
D C A B III 1 Y g Y
D C B A III 1 Y d Y

→
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A more general model
• N interdependent agents (i)

– pi – risk faced by agent i
– Li – loss incurred if risk ‘fires’
– ci – cost of precaution (prevents direct loss)
– Xi – strategy (N, P (precaution))
– Ii({K},Xi) – expected indirect cost to i when {K} choose P and i chooses Xi

– Only direct losses to i affect others so P protects others perfectly

• Expected payoffs to i’s choice:
– P: ci + Ii({K},P)
– N: piLi + (1-pi)Ii({K},N) –  is the non-additivity of harm, running from  = 0 (suffer both

direct and indirect damage) to  = 1 (suffer either direct or indirect damage – only go
bankrupt once)

– Indifferent if ci = C*({K}) = piLi+(1-pi)Ii({K},N) – Ii({K},P) (take precaution if cost lower
than C*({K})

• Different situations
– Case I: Ii({K},P) = Ii({K},N) = Ii({K}) and  = 1 so C*({K}) = pi[Li - Ii({K})].

• Ii falls as {K} gets bigger – higher Ii means lower C*
• C* rises, and tipping is possible.

– Case II: Ii({K},P) = 0 and  = 1 so C* = piLi+(1-pi)Ii({K},N)
• C* falls as {K} expands (Ii raises the critical cost)

– Case III: Ii({K},P) = Ii({K},N) = Ii({K}) so C*({K}) = pi[Ii({K}) – Investmenti]
• C* again falls as {K} expands, but for a different reason (free-ride on others’ investments
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Herd behaviour

• Consider a Nash equilibrium in which Xi = N, all i (no
precaution). A ‘critical mass’ is a coalition {K} such
that if Xi = P for all i in K then Cj*({K}) > cj for all j not
in K.

• [skipped for brevity – results on existence,
characterisation of smallest minimal critical mass
coalition]
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A Case I example
• Let rij be the risk that

infection from i transfers
to j (rii is the direct risk at
farm i) with (common)
loss L

• (P,P) is Pareto optimal in
an area that strictly
includes the shaded
region (so it is optimal
whenever it is an
equilibrium)

• In the central area,
tipping is possible

• With more than three
farms, cascades are
possible (following the
costs)

No precaution Precaution
No precaution -[r11+(1-r11)r21]L, -[r22+(1-r22)r12]L -r11L, -c2-r12L
Precaution -c1-r21L, -r22L -c1, -c2
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Future directions

• Coevolution of structure and behaviour

• Path-dependence

• Degrees of ‘public good’-ness (between the full
group and binary network models)

• Etc.


