Validating the existence of Design Patterns in UML models using
First-Order Logic statements derived from GEBNF definitions

Richard Amphlett, lan Bayley, Lijun Shan, Hong Zhu

In the Gang of Four’s (GoF) book “Design Patterns: Elements of Reusable Object-Oriented Software”[1] the exact implementation of Design Patterns (DPs) is
up to interpretation, because much of the subtlety of the DP structure is described in text. Given a stricter definition of a DP in GEBNF[2], can this definition
be used to validate the correct use of DPs within UML models?

Introduction

If Software Engineering is to be regarded as
an equal to the other engineering professions,
then the quality of software produced by the
Software Engineers needs to improve. Two of
the solutions that have emerged to help
achieve this goal are Unified Modelling
Language (UML) and Design Patterns. UML
provides a Model Driven Architecture
approach to systems design. DPs provide
general purpose solutions to commonly
encountered design problems. Both are
language and platform independent and, in
the GoF’s book, DPs are described in Object-
Modelling Technique (OMT) a predecessor to
UML.

The work for this URSS student scholarship
uses as its basis the work completed by
Bayley and Zhu in formalizing Design Patterns
using GEBNF, a graphical extension to BNF,
and the work of Shan in the formalization of
UML semantics in first-order logic (FOL) [3].
Shan’s work included the development of a
UML model consistency checker LAMBDES;
this tool uses the FOL theorem prover
SPASS[4] as one of its main components

Approach

By extending LAMBDES to allow DP
definitions (DPDs) to be included in the SPASS
input files, UML models could be checked for
the inclusion of DPs, see LAMBDES-DP
structure in Fig 1.

‘ LAMBDES DP ‘

Figure 1. Structure of LAMBDES-DP

For this process to be successfully completed
the GEBNF DPDs, example in Fig 2, need to be
converted to the SPASS input format,
example in Fig 3.

Components
. AbstractClass € classes
. templateMethod € AbstractClass.opers
. others < AbstractClass.opers

Static Conditions
. templateMethod.isLeaf
0 templateMethod & others

. Vo € others.—isLeaf
Dynamic Conditions
. Yo e others.callsHook(templateMethod,0)

Figure 2. GEBNF Template Method DPD

%%% TEMPLATE METHOD FOL %%%
formula(exists([

xAbstractClass,

xTemplateMethod,

xOthers],
and(

%%% COMPONENTS %%%
Class(xAbstractClass),
ownedOperation(xAbstractClass,xTemplateMethod),
ownedOperation(xAbstractClass,xOthers),

%%% STATIC CONDITIONS %%%
isLeaf(xTemplateMethod,bTrue),
not(equal(xTemplateMethod,xOthers)),
isLeaf(xOthers,bFalse)

%%% DYNAMIC CONDITIONS %%%
callsHook(xTemplateMethod,xOthers)
)))-

Figure 6. StarUML Wizard

Valid Positive Valid Negative

Timeout after 16.5 minutes (SPASS configurable maximum)

Figure 3. SPASS Template Method DPD

By converting all 23 of the GEBNF GoF DPDs in
this way and by running LAMBDES-DP in
batch mode it was possible to verify the
existence of each GoF DP in a concrete UML
model.

Experimental Results

To test this DP verification process, runs
against a number of sets of UML models
containing concrete instances of the 23 GoF
DPs were completed. The test sets differed
both in complexity and DP UML sources. Figs
4-6 give experimental output color coded, Fig
7, to highlight errors in the DP verification
process. The time taken to verify each DP is
marked in each cell (in seconds).

Figure 4. Minimal GEBNF

Figure 7. Color Key

Not all false positives imply errors. In the case
of the minimal GEBNF test, Fig. 4, false
positives indicate that the structure of one DP
is a subset of the structure of another.

As the complexity of the UML models
increases, as is the case in the GoF examples,
the number of false positives increases due to
accidental matches caused by additional
none-DP classes included in the model e.g.
client classes.

The false negatives in the StarUML examples
(the UML design tool used to create all of the
models) are caused by the StarUML design
team’s different interpretation of DP
requirements. These interpretational
inconsistencies arise because of the textual
nature of some parts of the GoF DPDs.

Future Work

Due to the increasing number of timeouts
that occurred as the complexity of the UML
models increases, a more efficient DP
verification process need to be designed if
there is any hope of being able to detect DPs
in real industrial ULM models. This may be
achievable by more intelligent creation of the
FOL input files, but may require the tool being
implemented using a different logic and/or
theorem prover. It is hoped that this work will
be completed as part of a final year
dissertation project.

References

1. Gamma, E., et al., Design patterns: elements of reusable object-oriented software. Addison-Wesley professional computing series. 1995, Reading, Mass. ; Wokingham: Addison-Wesley. xv, 395 p.
2. Zhu, H. and Bayley, I. Specifying Behavioural Features of Design Patterns, in COMPSAC. 2008, IEEE: Turku, Finland.

3. Shan, L. and Zhu, H. A Formal Descriptive Semantics of UML, to appear in Proc. of ICFEM 2008, Oct. 2008.

4, Geil3, V. SPASS: An Automated Theorem Prover for First-Order Logic with Equality. 2008 [cited 2008 09/09/2008]; Available from: http://www.spass-prover.org/.



