ADOLESCENT PHYSICAL ACTIVITY LEVELS AND FAMILY STRUCTURE: COMPARISON OF SELF-REPORTED AND OBJECTIVE DATA

Warwick Medical School b ESRC Midlands DTP c University of Warwick. Department of Sociology

BACKGROUND

Exercising is a major aspect of a healthy lifestyle, yet adolescent worldwide fail to be sufficiently active (Guthold et al., 2020). Physica activity is multi-dimensional and complex, and is affected by biological psychological, sociocultural, and environmental factors (Sterdt et al. 2014). Focusing on the impact of family structure, it is known that children growing up in diverse households, defined as non-two-paren biological/adopted households, are more likely to face time constraints, lack financial resources, parental involvement and genera support towards activities that aim at promoting a healthier lifestyle (Mazzuco and Meggiolaro, 2014; Quarmby et al., 2011).
Several studies have examined this association; however, their findings are limited to self-reported moderate to vigorous physical activity (MVPA) weekly frequencies. This study will be looking at acceleromete and time-diary derived measures of physical activity based on three different family structures.

METHODS

Data

The study uses the Millennium Cohort Study (MCS). MCS is a UK-representative, longitudinal study, where in age 14, time-diary (TUD and accelerometer (ACC) data were collected on the same days allowing for direct comparison. MCS sample used ensured that all fou UK countries are represented, as well as ethnic minority groups and individuals living in deprived areas (Plewis, 2007). School days were identified using the TUD fields: Homework, In class, School break, Schoo club and Detention.

Independent variables

Family structure was recoded in two-parent biological/adoptive family biological/adoptive parent and step-parent, and single parent ('other' types of families $<1 \%$ of the sample, thus dropped). Parental education was used as a proxy for socio-economic status and the parent with the highest qualification was included (overseas qualifications $<1 \%$ of the sample, thus dropped). Sex (female/male); Ethnicity (White/non-White) Healith (good/bad); Country (Engiand/Scotiand/Wales/Northern Ireland); Season (autumn/winter/spring/summer) and TUD Mode for TUD models (app; web; paper - see Chatzitheochari and Mylona, 2021 for a discussion on the MCS TUD modal differences).

1. MCS time-diary (TUD) and accelerometer (ACC) characteristic Table 1. Descripitive statisticics by school/non-school day, family structure and data collection Toble 1. Descripitive statisics by school/non-school day, famil structure and daric
tool (mean and standard error for tobit models; percentages for logistic models) School day ($n=1418 ; 39.4 \%$) \quad Non-school day ($n=2179 ; 60.6 \%$)

		$\begin{aligned} & \text { Two-parent } \\ & \text { family } \\ & (n=1089) \end{aligned}$	Parent and step-parent ($\mathrm{n}=101$)	$\begin{aligned} & \text { Single } \\ & \text { porent } \\ & (n=228) \end{aligned}$	Two-parent family ($n=1619$)	Parent and step-parent ($\mathrm{n}=159$)	$\begin{aligned} & \text { Single } \\ & \text { parent } \\ & (n=401) \end{aligned}$
		$\overline{\mathrm{x}}$ (S.E.) / \%	$\bar{x}(\mathrm{SE}.) / \mathrm{\%}$	$\overline{\mathrm{x}}$ (S.E.) / \%			
$\begin{gathered} \text { MVPA } \\ \text { doilv } \end{gathered}$	ACC^{\prime}	74.4 (43.7)	79.7 (42.2)	75.2 (44.9)	55.7 (50.5)	48.8 (52.3)	48.6 (47.9)
duration in mins	TUD2	69.1 (74.1)	$66.0166 .8)$	63.5 (71.2)	76.0 (102.2)	65.5 (101.4)	72.9 (105.9)
	ACC^{1}	55.3\%	60.4\%	57.5\%	35.6\%	27.0\%	29.4\%
$\begin{array}{\|l\|l\|} \text { MVPA } \\ \text { per day } \end{array}$	UD2	48.3\%	44.6\%	40.8\%	45.8\%	37.1\%	42.1\%

REFERENCES

Aithims

RESULTS

Tobit (duration in mins) and logistic (\geq than 60 mins per day) regression models are used to estimate MVPA levels per data collection instrument on a school and a non-school day.

Figure 2. Tobit model results; Tobit coefficients
Figure 3. Logistic rearession model results: Log-odds

Notes:
Adiusted

CONCLUSIONS

here seems to be no significant evidence that children living in 'diverse' family structures are disadvantaged when it comes to physical activity levels. Looking at the accelerometer derived coefficients, on school days, children living in 'diverse' family structures have higher odds of meeting the ≥ 60 daily minutes recommendation and engage for a longer period of time in physical activity. On non-school days, however, children living in 'diverse' family structures seem to spend their time engaging in sedentary activities, making them less likely to reach the desired ≥ 60 daily minutes recommendation, in particular those living with a parent and a step-parent (ACC and TUD: p<0.05), while they also seem to spend considerably less time on physical activity compared to children in two-parent families.
On school days, children seem to underreport their MVPA levels on the time-diary instrument, making the time-diary a questionable data collection tool for the overall daily MVPA levels of adolescents.

