Reliability versus Validity

Exploration of Single Variables

QS101: Introduction to Quantitative Methods in Social Science

Week 4: Reliability, Validity, and Exploration of Single Variables

Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression

23.10.2014

Florian Reiche

Reliability versus Validity

Exploration of Single Variables

A D > A A P > A

Reliability versus Validity Reliability Validity

Exploration of Single Variables

Describing the Centre of the Data Describing Variability of the Data

Florian Reiche

Reliability versus Validity

Exploration of Single Variables

Reliability versus Validity

▲口 → ▲圖 → ▲ 画 → ▲ 画 → のへで

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

\cap	utl	lin	
	սս		IE.

Reliability versus Validity ●○○○ ○○○○○○ Exploration of Single Variables

Reliability

- Stability
- Internal Reliability
- Inter-Observer Consistency

See also the discussion in Adcock, R.N. and David Collier. 2001. Measurement Validity: A Shared Standard for Qualitative and Quantitative Research. American Political Science Review, vol. 95, no. 3, 529-46

Outline	Reliability versus Validity ⊙●○○ ○○○○○○	Exploration of Single Variables
Reliability		
Stability		

- Is a measure stable over time?
- Remember last week's discussion of measuring economic development
- ► Tests of stability can be conducted by administering a test of a measure at two points of time t₁ and t₂, with t₁ ≠ t₂

Reliability versus Validity ○○●○ ○○○○○○ Exploration of Single Variables

Reliability

Florian Reiche

Internal Reliability

- Refers to the coherence of different attributes used to measure a concept
- In order to test internal reliability, the *split-half* method can be used

Reliability versus Validity

Exploration of Single Variables

Reliability

Inter-Observer Consistency

- Becomes a problem when a lot of subjective judgement is required in coding
- E.g. content analysis
- Are decisions consistent across observers?
- Example: coding of Polity IV

Florian Reiche

Outline	Reliability versus Validity ○○○○ ●○○○○○	Exploration of Single Variables 000000 0000000
Validity		
Validity		

- Face Validity
- Concurrent Validity
- Predictive Validity
- Construct Validity
- Convergent Validity

Reliability versus Validity ○○○○ ○●○○○○ Exploration of Single Variables

Validity

- Does the measure reflect the content of the concept in question
- Established by asking knowledgeable people
- Intuitive Process

Reliability versus Validity ○○○○ ○○●○○○ Exploration of Single Variables

э

Validity

Concurrent Validity

Employ a criterion on which cases are known to differ (e.g. students) and that is relevant to the concept

Reliability versus Validity ○○○○ ○○●○○○ Exploration of Single Variables

< □ > < 同 > < 三 > <

Validity

Concurrent Validity

- Employ a criterion on which cases are known to differ (e.g. students) and that is relevant to the concept
- Assume we measure Satisfaction with QS101 lectures, and employ absenteeism

Reliability versus Validity ○○○○ ○○●○○○ Exploration of Single Variables

Validity

Concurrent Validity

- Employ a criterion on which cases are known to differ (e.g. students) and that is relevant to the concept
- Assume we measure Satisfaction with QS101 lectures, and employ absenteeism
- Are those dissatisfied with the lecture more likely to be absent than those who are not?

Reliability versus Validity ○○○○ ○○●○○○ Exploration of Single Variables

Validity

Concurrent Validity

- Employ a criterion on which cases are known to differ (e.g. students) and that is relevant to the concept
- Assume we measure Satisfaction with QS101 lectures, and employ absenteeism
- Are those dissatisfied with the lecture more likely to be absent than those who are not?
- If so, then absenteeism has concurrent validity

Reliability versus Validity

Exploration of Single Variables

Validity

Predictive Validity

- Researcher uses a future criterion, rather than a contemporary one
- E.g. future levels of absenteeism

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Florian Reiche

Reliability versus Validity ○○○○ ○○○○●○ Exploration of Single Variables

문 문 문

Validity

Construct Validity

Form hypotheses from a *theory* that is relevant to the concept

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Reliability versus Validity ○○○○ ○○○○○● Exploration of Single Variables

Validity

Convergent Validity

- Compare a measure to measures of the same concept developed through other methods
- E.g. not just ask students how much time they spend on preparing seminars, but let them do a diary, logging preparation time

Reliability versus Validity

Exploration of Single Variables

Exploration of Single Variables

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Reliability versus Validity oooo oooooo	Exploration of Single Variables ●00000 ○000000
Describing the Centre of the Data		

<u> </u>	1
11	
	ar

The sum of the observations divided by the	i	age
number of observations.	1 2 3 4	19 20 33 22
	5	21

Florian Reiche

Outline	Reliability versus Validity 0000 000000	Exploration of Single Variables ●00000 0000000
Describing the Centre of the Data		

Mean

The sum of the observations divided by the	i	age
number of observations.	1	19
19 + 20 + 33 + 22 + 21 = 115	2	20
13 + 26 + 33 + 22 + 21 = 113	3	33
	4	22
	5	21

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Florian Reiche

Outline	

Describing the Centre of the Data

Mean

The sum of the observations divided by the	i	age
number of observations.	1	19
▶ $19 + 20 + 33 + 22 + 21 = 115$	2	20
	3	33
$ \frac{19+20+33+22+21}{5} = 23 $	4	22
5	5	21

Florian Reiche

0		. 1		_
U	u	ιı	11	

Exploration of Single Variables

(ロ) (四) (三) (三)

2

Describing the Centre of the Data

The sur	n of the observations divided by the	i	age
number	of observations.	1	19
▶ 19 + 20	+33+22+21=115	-	20
		3	33
► <u>19+20+3</u>	$\frac{3+22+21}{5} = 23$	4	22
$\bar{y} = \frac{\Sigma y_i}{p}$	5	5	21

n

Reliability versus Validity

Exploration of Single Variables

Describing the Centre of the Data

Some Conventions

Sample size: n

▲口 → ▲圖 → ▲ 画 → ▲ 画 → のへで

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Reliability versus Validity

Exploration of Single Variables

Describing the Centre of the Data

- Sample size: n
- Observations of a variable y are denoted as $y_1, y_2, y_3, \ldots, y_n$

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Reliability versus Validity

Exploration of Single Variables

э

Describing the Centre of the Data

- Sample size: n
- Observations of a variable y are denoted as $y_1, y_2, y_3, \ldots, y_n$
- The sample mean is denoted as \bar{y}

э

Image: A math the second se

Describing the Centre of the Data

Weighted Average

- Denote the sample means for two sets of data with sample sizes n₁ and n₂
- ► The overall sample mean for the combined set of (n₁ + n₂) can then be written as:

$$\bar{y} = rac{n_1 \bar{y_1} + n_2 \bar{y_2}}{n_1 + n_2}$$

Florian Reiche

Outline	Reliability versus Validity 0000 000000	Exploration of Single Variables
Describing the Centre of the Data		
Median		

 The median splits the sample into two parts with equal numbers of observations, when they are ordered from lowest to highest

0	utl	ine		

Exploration of Single Variables

Describing the Centre of the Data

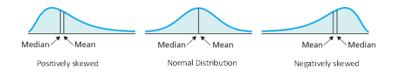
- The median splits the sample into two parts with equal numbers of observations, when they are ordered from lowest to highest
- If the sample size n is odd, a single observation occurs in the middle.

U	ПĒ	ne

Exploration of Single Variables

Describing the Centre of the Data

- The median splits the sample into two parts with equal numbers of observations, when they are ordered from lowest to highest
- ► If the sample size n is odd, a single observation occurs in the middle.
- If the sample size n is even, two middle observations occur, and the median is the midpoint (average) between the two.


0			

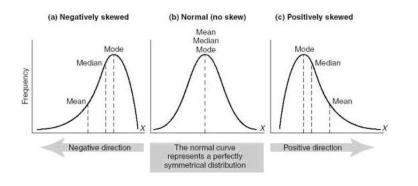
Exploration of Single Variables

Describing the Centre of the Data

Mean and Median

- > For symmetric distributions, mean and median are identical
- For skewed distributions, the mean lies toward the direction of the slew (the longer tail), relative to the median
- ► The median is unaffected by outliers (!)

n	ы	n	~


Exploration of Single Variables

글 > 글

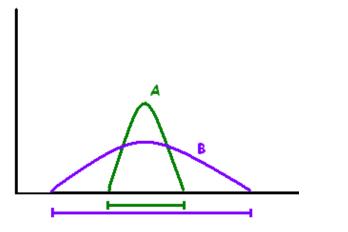
Describing the Centre of the Data

Mode

The mode is the value that occurs most frequently.

Florian Reiche

Reliability versus Validity


Exploration of Single Variables

æ

э

Describing Variability of the Data

Why the measure of centre doesn't do it

Florian Reiche

Outline	Reliability versus Validity ০০০০ ০০০০০০	Exploration of Single Variables ○○○○○○ ○●○○○○○
Describing Variability of the Data		
2		

Range

Is simply the difference between the largest and the smallest observation.

э.

・ロト ・四ト ・ヨト ・ヨト

Outline	Reliability versus Validity 0000 000000	Exploration of Single Variables ○○○○○○ ○○●○○○○
Describing Variability of the Data	a	
Deviation		

The deviation d of an observation y_i from the sample mean y
is the difference between them:

$$d = y_i - \bar{y}$$

- The deviation is positive when the observation falls above the mean.
- The deviation is negative when the observation falls below the mean.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Unfortunately,
$$\Sigma(y_i - \bar{y}) = 0$$

Outline	0			
	U	uτ	line	

Exploration of Single Variables

Describing Variability of the Data

Standard Deviation

▶ The standard deviation *s* of *n* observations is

$$s = \sqrt{rac{\Sigma(y_i - ar{y})^2}{n-1}} = \sqrt{rac{ ext{sum of squared deviations}}{ ext{sample size} - 1}}$$

• This is the positive square root of the variance s^2 , which is

$$s^{2} = rac{\Sigma(y_{i}-ar{y})^{2}}{n-1} = rac{(y_{1}-ar{y})^{2}+(y_{2}-ar{y})^{2}+\ldots+(y_{n}-ar{y})^{2}}{n-1}$$

- The variance is approximately an average of the squared deviations
- As the units of measurement are squared, this makes the variance difficult to interpret

Florian Reiche

Reliability versus Validity

Exploration of Single Variables

Describing Variability of the Data

Properties of the Standard Deviation

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・ の へ ()

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Reliability versus Validity

Exploration of Single Variables

3

Image: A math the second se

Describing Variability of the Data

Properties of the Standard Deviation

- ▶ s ≥ 0
- s = 0 only when all observations have the same value

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Reliability versus Validity

Exploration of Single Variables

Describing Variability of the Data

Properties of the Standard Deviation

- ▶ s ≥ 0
- s = 0 only when all observations have the same value
- ► The greater the variability around the mean, the larger is the value of *s*.

Reliability versus Validity

Exploration of Single Variables

Describing Variability of the Data

Properties of the Standard Deviation

- ▶ s ≥ 0
- s = 0 only when all observations have the same value
- The greater the variability around the mean, the larger is the value of *s*.
- We will return to the interpretation of the magnitude of S next week, when we look at distributions.

Reliability versus Validity

Exploration of Single Variables

э

Image: A math the second se

Describing Variability of the Data

Quartiles and Percentiles

► The pth percentile is the point such that p% of the observations fall below or at that point and (100 - p) % fall above it.

Reliability versus Validity

Exploration of Single Variables

Describing Variability of the Data

Quartiles and Percentiles

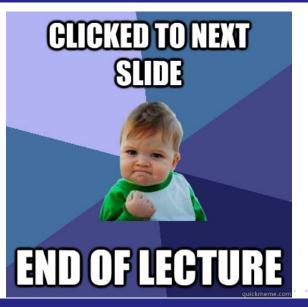
- ► The pth percentile is the point such that p% of the observations fall below or at that point and (100 p) % fall above it.
- ► The 25th percentile is called the lower quartile. The 75th percentile is called the upper quartile.

Exploration of Single Variables

Describing Variability of the Data

Quartiles and Percentiles

- ► The pth percentile is the point such that p% of the observations fall below or at that point and (100 p) % fall above it.
- ► The 25th percentile is called the lower quartile. The 75th percentile is called the upper quartile.
- One quarter of the data fall below the lower quartile, and one quarter of the data fall above the upper quartile.


Describing Variability of the Data

Quartiles and Percentiles

- ► The pth percentile is the point such that p% of the observations fall below or at that point and (100 p) % fall above it.
- ► The 25th percentile is called the lower quartile. The 75th percentile is called the upper quartile.
- One quarter of the data fall below the lower quartile, and one quarter of the data fall above the upper quartile.
- The difference between the two quartiles is called the interquartile range, denoted by IQR.

Exploration of Single Variables ○○○○○ ○○○○○●

Describing Variability of the Data

Florian Reiche