QS101: Introduction to Quantitative Methods in Social Science

Week 5: Levels of Measurement and Distributions

Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression

30.10.2014

Florian Reiche

Levels of Measurement

Nominal Scales Ordinal Scales Interval Scales Ratio Scales

Distributions

Tabular Display of Distributions Graphical Display of Distributions

\sim	ut	I:	~
U	uι	IIII	e

Levels of Measurement

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Types of Variables

Constant

- Any characteristic that is observed only to take on one, single value
- Categorical
 - Qualitative in nature
 - Describes categories of a characteristic, e.g. party affiliation
 - Special case: DICHOTMOUS variable
- Numerical
 - Quantitative variable
 - Further classification: continuous versus discrete (see next slide)

Continuous versus Discrete Variables

CONTINUOUS VARIABLE

- Can take any value in a specific range
- Varies between a smaller and a larger number
- Examples: GDP, time, length, age, weight, ...

DISCRETE VARIABLE

- Can only take on certain values, many are not possible
- Arise from a counting process
- Examples: number of children in family, number of students per seminar, ...

1	n	ut	ы	:	n .	
	U	u				

Nominal Scales

Levels of Measurement Nominal Scales

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

0	• • •	+1	-	~
U	u	L		

Nominal Scales

Nominal Scales: Properties

- AKA categorical scales, or qualitative scales
- Assign people or objects into qualitatively different categories
- Assumption that all items in a category are equal with respect to that category
- NO intermittent categories
- Examples: accommodation, eye colour, gender, ...

0	• • •	ы	:.	-	
U	u	LI		U.	

Nominal Scales

Nominal Scales: Descriptives

No

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

0	• • •	+1	-	~
U	u	L		

Nominal Scales

Nominal Scales: Descriptives

- Mean
 - No
- Median
 - No
 - Requires ordering

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへで

Florian Reiche

글 > 글

Nominal Scales

Nominal Scales: Descriptives

- Mean
 - No
- Median
 - No
 - Requires ordering
- Mode
 - Yes
 - Measure the mode for a particular religion

Florian Reiche

1	n	ut	ы	:	n .	
	U	u				

Ordinal Scales

Levels of Measurement Ordinal Scales

Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q () -

Ordinal Scales

Ordinal Scales: Properties

- Rank people or objects on some variable
- Requires classification
 - How much of a value does an individual have?
- Requires ranking
 - Where does the individual stand relative to the others?
- Equal difference does not imply equal distance
- Examples: Order of finish in a race, military rank,

Outline

Ordinal Scales

Ordinal Scales: Descriptives

Mean

 No (understanding as categorical variable, most often the case) / Yes (understanding as numerical variable)

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

э

Ordinal Scales

Ordinal Scales: Descriptives

Mean

 No (understanding as categorical variable, most often the case) / Yes (understanding as numerical variable)

Median

Yes

Florian Reiche

э

Ordinal Scales

Ordinal Scales: Descriptives

- Mean
 - No (understanding as categorical variable, most often the case) / Yes (understanding as numerical variable)

- Median
 - Yes
- Mode
 - Yes

Florian Reiche

4	0		.1	:	 ~
1	υ	u	ιı	l	

Interval Scales

Levels of Measurement Interval Scales

Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

・ロト・日本・日本・日本・日本・ションシント

\cap	ut	16,	n	
\circ	սւ			

Interval Scales: Properties

- Most commonly used score in statistics
- Give information about ranking of people or objects
- Provide information on how far apart people or objects are on that variable
- ► Assumption: equal difference between all points on the score
 - ► E.g. difference between 7 and 8 is the same as between 20 and 21
- Examples: IQ test, temperature, year, ...

1	n	ut	ы	:	n .	
	U	u				

Interval Scales: Descriptives

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

Florian Reiche

0	• • •	+1	-	~
U	u	L		

Interval Scales: Descriptives

- Mean
 - Yes
- Median
 - Yes

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Florian Reiche

0	• • •	+1	-	~
U	u	L		

Interval Scales: Descriptives

- Mean
 - Yes
- Median
 - Yes
- Mode
 - Yes

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへで

Florian Reiche

Outline	Levels of Measurement	Distribut
	000 000 000 000	000000 000000

ions

э.

.≣...>

・ロト ・回ト ・ヨト ・

Ratio Scales

Levels of Measurement Ratio Scales

Florian Reiche

Outline	Levels of Measurement ○○○ ○○○ ○○○ ○○○	Distributions 000000000 00000000
Ratio Scales		
Ratio Scales: Propert	ies	

See properties of interval scale

Outline	Levels of Measurement ○○○ ○○○ ○○○ ○●○	Distributions 000000000 0000000
Ratio Scales		
Ratio Scales: Propert	ies	

- See properties of interval scale
- PLUS: a natural zero point (ABSOLUTE zero) which indicates the total absence of a characteristic

э

Outline	Levels of Measurement ○○○ ○○○ ○○○ ○●●	Distributions 0000000000 00000000
Ratio Scales		
Ratio Scales: Propert	ies	

- See properties of interval scale
- PLUS: a natural zero point (ABSOLUTE zero) which indicates the total absence of a characteristic
- ► Here, claims such as "twice as large" are possible

Outline	Levels of Measurement ○○○ ○○○ ○○○ ○●●	Distributions 0000000000 0000000
Ratio Scales		
Ratio Scales: Propert	ies	

- See properties of interval scale
- PLUS: a natural zero point (ABSOLUTE zero) which indicates the total absence of a characteristic
- ► Here, claims such as "twice as large" are possible
- Treated as numerical, and can either be discrete, or continuous

Outline	Levels of Measurement ○○○ ○○○ ○○○ ○●●	Distributions 000000000 0000000
Ratio Scales		
Ratio Scales: Propert	ies	

- See properties of interval scale
- PLUS: a natural zero point (ABSOLUTE zero) which indicates the total absence of a characteristic
- ► Here, claims such as "twice as large" are possible
- Treated as numerical, and can either be discrete, or continuous
- Less common in social sciences, frequently used for example in economics or sciences

Outline	Levels of Measurement ○○○ ○○○ ○○○ ○●●	Distributions 0000000000 00000000
Ratio Scales		
Ratio Scales: Propert	ies	

- See properties of interval scale
- PLUS: a natural zero point (ABSOLUTE zero) which indicates the total absence of a characteristic
- ► Here, claims such as "twice as large" are possible
- Treated as numerical, and can either be discrete, or continuous
- Less common in social sciences, frequently used for example in economics or sciences
- Examples: height, weight, age, blood pressure

Outline			

Ratio Scales

Ratio Scales: Descriptives

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

Florian Reiche

Outline	Levels of Measurement	Distributions
	000	000000000
	000	
	000	
	000	
Ratio Scales		

Ratio Scales: Descriptives

- Mean
 - Yes
- Median
 - Yes

Outline	Levels of Measurement	Distributions
	000	000000000000000000000000000000000000000
	000 000	
Ratio Scales		

Ratio Scales: Descriptives

- Mean
 - Yes
- Median
 - Yes
- Mode
 - Yes

\sim	ut	I:	~
U	uι	шп	e

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Florian Reiche

0			1:		~
U	u	ι	ш	п	e

Levels of Measurement

Tabular Display of Distributions

Distributions Tabular Display of Distributions

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Levels of Measurement 000 000 000 000	Distributions ○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
Tabular Display of Distributions		
-		

- Depicts the number of cases in a particular interval
- ► Note: Intervals are often grouped for convenience
- Grouping is a trade-off between loss of information and good communication of data

Frequency

Outline	Levels of Measurement 000 000 000 000	Distributions ⊙●⊙⊙⊙⊙⊙⊙ ○○○○○○○
Tabular Display of Distributions		

Example

- Statistics Quiz
- ▶ *n* = 25
- 20 questions, 1 point each

Tabular Display of Distributions

Frequency Distributions

x	f
9	1
10	1
11	2
12	1
13	2
14	1
15	3
16	1
17	5
18	3
19	4
20	1
	n = 25

Table: Frequency Distribution of Statistics Quiz Data (source: Lomax and Hahs-Vaughn (2012), p. 19)

Florian Reiche

Outline

Tabular Display of Distributions

- Depicts the number of cases in that interval and all of the smaller intervals
- Shown in the column labelled *cf* on the next slide
- The number of the final interval is always the sample size.

Frequency Distributions

x	f	cf
9	1	1
10	1	2
11	2	4
12	1	5
13	2	7
14	1	8
15	3	11
16	1	12
17	5	17
18	3	20
19	4	24
20	1	25
	n = 25	

Table: Frequency Distribution of Statistics Quiz Data (source: Lomax and Hahs-Vaughn (2012), p. 19)

Florian Reiche

0		+1	n	~
U	u	LI		e

- Depicts the percentage of cases in a particular
- Shown in the column labelled *rf* on the next slide
- Can be used with *any* measurement scale

Frequency Distributions

x	f	cf	rf
9	1	1	f/n = 1/25 = 0.04
10	1	2	0.04
11	2	4	0.08
12	1	5	0.04
13	2	7	0.08
14	1	8	0.04
15	3	11	0.12
16	1	12	0.04
17	5	17	0.20
18	3	20	0.12
19	4	24	0.16
20	1	25	0.04
	n = 25		$\Sigma=1.00$

Table: Frequency Distribution of Statistics Quiz Data (source: Lomax and Hahs-Vaughn (2012), p. 19)

Florian Reiche

Cumulative Relative Frequency

- Depicts the percentage of cases in that interval or smaller
- The *crf* in the largest interval is equal to 1
- Cannot be used with nominal data

Frequency Distributions

x	f	cf	rf	crf
9	1	1	f/n = 1/25 = 0.04	0.04
10	1	2	0.04	0.08
11	2	4	0.08	0.16
12	1	5	0.04	0.20
13	2	7	0.08	0.28
14	1	8	0.04	0.32
15	3	11	0.12	0.44
16	1	12	0.04	0.48
17	5	17	0.20	0.68
18	3	20	0.12	0.80
19	4	24	0.16	0.96
20	1	25	0.04	1.00
	n = 25		$\Sigma=1.00$	

Table: Frequency Distribution of Statistics Quiz Data (source: Lomax and Hahs-Vaughn (2012), p. 19)

Florian Reiche

0		1:		-
U	u	ш	п	e

Graphical Display of Distributions

Distributions Graphical Display of Distributions

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Levels of Measurement 000 000 000 000	Distributions ○○○○○○○○○ ○●○○○○○
Graphical Display of Distributions		
Bar Graph		

Popular for displaying nominally scaled data

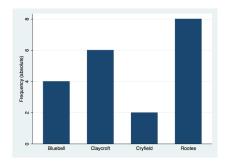


Figure: Bar Graph for Accommodation Type

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

Florian Reiche

Graphical Display of Distributions

Histograms

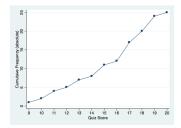
- Appropriate for data that are at least ordinal
- x-axis: values of the variable x
- y-axis: frequency for each interval
- Midpoint of the interval is also the midpoint of the bar (!)

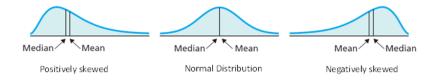
Florian Reiche

Graphical Display of Distributions

Cumulative Frequency Polygon

- Appropriate for data that are at least ordinal
- y-axis: cumulative frequencies
- Polygon cannot be closed on the right hand-side




Figure: Cumulative frequency polygon of statistics quiz data

Florian Reiche

Distributions

Graphical Display of Distributions

Shapes of Frequency Distributions

◆□ > ◆□ > ◆豆 > ◆豆 > □ □ ○ ○ ○ ○

Florian Reiche

Distributions

Graphical Display of Distributions

Box-and-Whisker Plot

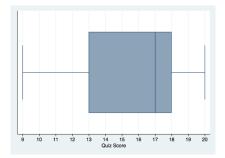


Figure: Box-and-Whisker plot of statistics quiz data

メロト メ起 トメヨト メヨト 三国 三の人

Florian Reiche

Distributions

Graphical Display of Distributions

Florian Reiche