QS101: Introduction to Quantitative Methods in Social Science

Week 7: Probability Theory

Florian Reiche
 Teaching Fellow in Quantitative Methods
 Course Director BA Politics and Sociology
 Deputy Director of Student Experience and Progression

13.11.2014

Why Probability Theory?

Counting Rules and Permutations

Sets and Operations of Sets Introduction to Sets
Operations on Sets

The Probability Function \& Calculations

Odds

Why Probability Theory?

- Systematic treatment of uncertainty
- Humans often think in probabilistic terms (even if not gambling)
- Precursor to statistical inference (week 10 and beyond)

What we do, moves towards objective probability, which is defined as a limiting relative frequency: the long-run behaviour of a nondeterministic outcome or just an observed proportion in a population.

Counting Rules and Permutations

Minor Complexities of Counting

- Two features of counting:
- Does the order matter?
- Are we counting events more than once?

Florian Reiche

How many Ways to Order?

$$
\begin{gathered}
\text { Factorial Function } \\
n(n-1)(n-2) \ldots(2)(1)=n!
\end{gathered}
$$

Four Scenarios of Counting

- Ordered, with Replacement
- Ordered, without replacement
- Unordered, without replacement
- Unordered, with replacement

Ordered, with Replacement

- We have n objects
- We want to pick $k<n$ from them
- We replace on each iteration
- So we always have n choices

$$
n \times n \times \cdots n=n^{k}
$$

Ordered, without Replacement

- We have n objects
- We want to pick $k<n$ from them
- We do not replace on each iteraction
- So we have n choices on the first draw, $n-1$ on the second draw, $n-2$ on the third draw, and so on

$$
n \times(n-1) \times(n-2) \times \cdots \times(n-k+2) \times(n-k+1)=\frac{n!}{(n-k)!}
$$

Note: This is wrong in the Gill book!

Unordered, without Replacement

- Extremely common sampling procedure
- Think of this like the last case, but we cannot see the order of picking
- Imagine we have balls in an urn: red, blue, white
- Now, it does not matter, whether we have red, blue, white or white, blue, red, and so on
- Recalling the factorial function, we now have k ! fewer choices than with ordered counting

$$
\frac{n!}{(n-k)!k!}=\binom{n}{k}
$$

Unordered, with Replacement

- Terribly unintuitive
- Think of this one as to be adjusted upwards to reflect the increased number of choices

$$
\frac{(n+k-1)!}{(n-1)!k!}=\binom{n+k-1}{k}
$$

Does it matter?

- 10 students
- 3 come to see me in advice and feedback hours
- Ordered, with replacement: 1,000
- Ordered, without replacement: 720
- Unordered, without replacement: 120
- Unordered, with replacement: 220

Sets and Operations of Sets

Florian Reiche

Sets and Operations of Sets
 Introduction to Sets

What's a Set?

- A set is a bounded collection, defined by its contents (or lack thereof) and is denoted with curly braces.
- So, a set of even, positive integers less than 10 is

$$
\{2,4,6,8\}
$$

Terminology

- "Thingies" contained within a set are called elements
- An event is any collection of possible outcomes of an experiment (any subset, or full set of possibilities, including the full set itself)
- Events are usually labelled with capital Roman letters, such as A, B, T, H, ...
- Example: The event that an even number occurs when we throw a die, is

$$
A=\{2,4,6\}
$$

Characteristics of Sets

- Countability
- Countable: One-to-one correspondence to a positive integer, such as $S=\{1,2,3,4,5,6\}$ for rolling a die
- Uncountable: $\mathcal{S}=[0: 2 \pi]$, for spinning a pointer on a circle, and looking at the angle in radians
- Finiteness (finite, or infinite)
- Cardinality: number of elements in a set, usually given by $n(A)$

Note: \mathcal{S} denotes the sample space of a given experiment, such as rolling a die.

- Does not contain any elements
- Useful later on
- Is denoted as ϕ (Greek letter phi)

Sets and Operations of Sets

Operations on Sets

Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

Subsets

- Set A is a subset of B, if every element of A is also an element of B

Subsets

- Set A is a subset of B, if every element of A is also an element of B
- Formally: $A \subset B$, or $B \supset A$

Subsets

- Set A is a subset of B, if every element of A is also an element of B
- Formally: $A \subset B$, or $B \supset A$
- Note: $A \subset B \Leftrightarrow \forall X \in A, X \in B$

Subsets

- Set A is a subset of B, if every element of A is also an element of B
- Formally: $A \subset B$, or $B \supset A$
- Note: $A \subset B \Leftrightarrow \forall X \in A, X \in B$
- A is called a proper subset of B if $A \neq B$

Subsets

- Set A is a subset of B, if every element of A is also an element of B
- Formally: $A \subset B$, or $B \supset A$
- Note: $A \subset B \Leftrightarrow \forall X \in A, X \in B$
- A is called a proper subset of B if $A \neq B$
- $A=B \Leftrightarrow A \subset B$ and $B \subset A$

Union of Sets

- A union of Sets A and $B, A \cup B$, is the new set that contains all of the elements that belong to either $A O R B$
- Formally

$$
A \cup B=\{X: X \in A \text { or } X \in B\}
$$

Example

- We throw a single die, and define the following sample space and sets:

$$
\begin{align*}
\mathcal{S} & =\{1,2,3,4,5,6\} \\
A & =\{2,4,6\} \tag{1}\\
B & =\{4,5,6\} \\
C & =\{1\}
\end{align*}
$$

Then

$$
A \cup B=\{2,4,5,6\}
$$

Intersection of Sets

- An intersection of Sets A and $B, A \cap B$, is the new set that contains all of the elements that belong to either A AND B
- Formally

$$
A \cap B=\{X: X \in A \text { and } X \in B\}
$$

Note that if $A \cap B=\phi$, then the two sets A and B are called disjoint.

Example

- We throw a single die, and define the following sample space and sets:

$$
\begin{align*}
\mathcal{S} & =\{1,2,3,4,5,6\} \\
A & =\{2,4,6\} \tag{2}\\
B & =\{4,5,6\} \\
C & =\{1\}
\end{align*}
$$

Then

$$
A \cap B=\{4,6\}
$$

Complement of Sets

- A complement of a given set is the set that contains all elements not in the original set
- Formally

$$
A^{C}=\{X: X \notin A\}
$$

Example

- We throw a single die, and define the following sample space and sets:

$$
\begin{align*}
& \mathcal{S}=\{1,2,3,4,5,6\} \\
& A=\{2,4,6\} \tag{3}\\
& B=\{4,5,6\} \\
& C=\{1\}
\end{align*}
$$

Then

$$
A^{C}=\{1,3,5\}
$$

Difference Operator

- Defines which portion of a given set is NOT a member of the other
- The difference of A relative to B is the set of elements X whereby

$$
\begin{gathered}
A \backslash B=\{X: X \in A \text { and } X \notin B \\
\text { or } \\
A \backslash B=A \cap B^{C}
\end{gathered}
$$

Example

- We throw a single die, and define the following sample space and sets:

$$
\begin{align*}
\mathcal{S} & =\{1,2,3,4,5,6\} \\
A & =\{2,4,6\} \\
B & =\{4,5,6\} \tag{4}\\
C & =\{1\}
\end{align*}
$$

Then

$$
\begin{aligned}
& A \backslash B=\{2\} \\
& B \backslash A=\{5\}
\end{aligned}
$$

The Probability Function \& Calculations

The Probability Function

- Is a mapping of an event (or events) onto a metric bounded by zero (it cannot happen) and one (it will happen with absolute certainty).
- Allows us to discuss various degrees of likelihood of occurrence in a systematic and practical way

Calculations with Probabilities

- Good news: Rules are straightforward
- For A and B in \mathcal{S}
$\hookrightarrow \quad$ Probability of Unions

$$
\begin{aligned}
& p(A \cup B) \\
& =p(A)+p(B)-p(A \cap B)
\end{aligned}
$$

\mapsto Probability of Intersections
$\rightarrow \quad$ Probability of Complements
$p(A \cap B)$
$=p(A)+p(B)-p(A \cup B)$
(also denoted $p(A, B)$)
$p\left(A^{C}\right)=1-p(A)$,
$p(A)=1-p\left(A^{C}\right)$
\rightarrow Probability of Null Set
$p(\phi)=0$
$\mapsto \quad$ Probability of the Sample Space $\quad p(\mathcal{S})=1$

The Theorem of Total Probability

- Given any events A and B,

$$
p(A)=p(A \cap B)+p\left(A \cap B^{C}\right)
$$

- Probability of an event A can be decomposed into two parts
- One that intersects with another set B
- One that intersects with the complement of B

Odds

Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

- Imagine a sample space with two outcomes: success and failure
- Actually quite common in social sciences: wars, marriages, memberships, crimes, etc.
- Let $p(S)$ be the probability of success
- Then, the define the probability of failure as $q=p(F)=1-p$
- Then, the odds of success are

$$
\operatorname{odds}(S)=\frac{p}{q}
$$

Note: Odds are positive, but unbounded.

