

QS101: Introduction to Quantitative Methods in Social Science Week 7: Probability Theory

Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression

13.11.2014

Florian Reiche

Why Probability Theory?

Counting Rules and Permutations

Sets and Operations of Sets Introduction to Sets Operations on Sets

The Probability Function & Calculations

Odds

・ロト ・聞 ト ・ヨト ・ヨト ・ヨー うくの

Florian Reiche

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Why Probability Theory?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

- Systematic treatment of uncertainty
- Humans often think in probabilistic terms (even if not gambling)
- Precursor to statistical inference (week 10 and beyond)

What we do, moves towards objective probability, which is defined as a limiting relative frequency: the long-run behaviour of a nondeterministic outcome or just an observed proportion in a population.

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Counting Rules and Permutations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Minor Complexities of Counting

- ► Two features of counting:
 - Does the order matter?
 - Are we counting events more than once?

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

How many Ways to Order?

Factorial Function $n(n-1)(n-2) \dots (2)(1) = n!$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Florian Reiche

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Four Scenarios of Counting

- Ordered, with Replacement
- Ordered, without replacement
- Unordered, without replacement
- Unordered, with replacement

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Ordered, with Replacement

- We have n objects
- We want to pick k < n from them
- We replace on each iteration
- So we always have n choices

$$n \times n \times \cdots n = n^k$$

Florian Reiche

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Ordered, without Replacement

- We have n objects
- We want to pick k < n from them
- We do not replace on each iteraction
- So we have n choices on the first draw, n − 1 on the second draw, n − 2 on the third draw, and so on

$$n \times (n-1) \times (n-2) \times \cdots \times (n-k+2) \times (n-k+1) = \frac{n!}{(n-k)!}$$

Note: This is wrong in the Gill book!

Florian Reiche

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Unordered, without Replacement

- Extremely common sampling procedure
- Think of this like the last case, but we cannot see the order of picking
- Imagine we have balls in an urn: red, blue, white
- Now, it does not matter, whether we have red, blue, white or white, blue, red, and so on
- Recalling the factorial function, we now have k! fewer choices than with ordered counting

$$\frac{n!}{(n-k)!k!} = \binom{n}{k}$$

Florian Reiche

Outline	Why?	Counting	Sets 00000 000000000	Prob.	Function	Odds

Unordered, with Replacement

- Terribly unintuitive
- Think of this one as to be adjusted upwards to reflect the increased number of choices

$$\frac{(n+k-1)!}{(n-1)!k!} = \binom{n+k-1}{k}$$

э

Florian Reiche

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Does it matter?

- 10 students
- 3 come to see me in advice and feedback hours
 - Ordered, with replacement: 1,000
 - Ordered, without replacement: 720
 - Unordered, without replacement: 120
 - Unordered, with replacement: 220

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Sets and Operations of Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Why?	Counting	Sets •0000 •00000000	Prob.	Function	Odds
Introduction to Set	5					

Sets and Operations of Sets Introduction to Sets

< • • • • **•**

3

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Why?	Counting	Sets 0●000 000000000	Prob. Function	Odds
Introduction to	Sets				
What's	a Set?				

- A set is a bounded collection, defined by its contents (or lack thereof) and is denoted with curly braces.
- ► So, a set of even, positive integers less than 10 is

 $\{2,4,6,8\}$

Florian Reiche

Outline	Why?	Counting	Sets 00●00 000000000	Prob. Function	Odds
Introduction t	o Sets				
Termin	ology				

- "Thingies" contained within a set are called *elements*
- An *event* is any collection of possible outcomes of an experiment (any subset, or full set of possibilities, including the full set itself)
- Events are usually labelled with capital Roman letters, such as A, B, T, H, ...
- Example: The event that an even number occurs when we throw a die, is

$$A = \{2, 4, 6\}$$

▲ @ ▶ ▲ ■ ▶ ▲

Outline	Why?	Counting	Sets 000●0 000000000	Prob. Function	Odds
Introduction to S	Sets				

Characteristics of Sets

- Countability
 - ► Countable: One-to-one correspondence to a positive integer, such as S = {1, 2, 3, 4, 5, 6} for rolling a die
 - ► Uncountable: S = [0 : 2π], for spinning a pointer on a circle, and looking at the angle in radians
- Finiteness (finite, or infinite)
- Cardinality: number of elements in a set, usually given by n(A)

Note: $\ensuremath{\mathcal{S}}$ denotes the sample space of a given experiment, such as rolling a die.

Outline	Why?	Counting	Sets 0000● 0000000000	Prob. Function	Odds
Introduction t	o Sets				
The Fr	nptv Set				

- Does not contain any elements
- Useful later on

• Is denoted as ϕ (Greek letter phi)

Outline	Why?	Counting	Sets ○○○○○ ●○○○○○○○○○	Prob.	Function	Odds
Operations on Sets						

Sets and Operations of Sets Operations on Sets

3

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Why?	Counting	Sets ○○○○○ ○●○○○○○○○○	Prob. Function	Odds
Operations on	Sets				
Subsets	;				

Set A is a subset of B, if every element of A is also an element of B

3

Outline	Why?	Counting	Sets ○○○○○ ○●○○○○○○○○	Prob. Function	Odds
Operations on Se	ets				
Subsets					

- Set A is a subset of B, if every element of A is also an element of B
- Formally: $A \subset B$, or $B \supset A$

Outline	Why?	Counting	Sets ○○○○○ ○●○○○○○○○○	Prob. Function	Odds
Operations on	Sets				
Subsets					

 Set A is a subset of B, if every element of A is also an element of B

э

< □ > < 同 > < 三 > <

- Formally: $A \subset B$, or $B \supset A$
- Note: $A \subset B \Leftrightarrow \forall X \in A, X \in B$

Outline	Why?	Counting	Sets ○○○○○ ○●○○○○○○○○	Prob. Function	Odds
Operations on S	ets				
Subsets					

- Set A is a subset of B, if every element of A is also an element of B
- Formally: $A \subset B$, or $B \supset A$
- Note: $A \subset B \Leftrightarrow \forall X \in A, X \in B$
- A is called a proper subset of B if $A \neq B$

Outline	Why?	Counting	Sets ○○○○○ ○●○○○○○○○○	Prob. Function	Odds
Operations on S	ets				
Subsets					

 Set A is a subset of B, if every element of A is also an element of B

< □ > < 同 > < 三 > <

- Formally: $A \subset B$, or $B \supset A$
- Note: $A \subset B \Leftrightarrow \forall X \in A, X \in B$
- A is called a proper subset of B if $A \neq B$
- $A = B \Leftrightarrow A \subset B$ and $B \subset A$

Outline	Why?	Counting	Sets ○○○○○ ○○●○○○○○○○	Prob. Function	Odds
Operations on S	ets				
Union o	f Sets				

A union of Sets A and B, A ∪ B, is the new set that contains all of the elements that belong to either A OR B

Formally

$$A \cup B = \{X : X \in A \text{ or } X \in B\}$$

2

Florian Reiche

Outline	Why?	Counting	Sets ○○○○ ○○○●○○○○○○	Prob. Function	Odds
Operations on S	Sets				
Example	е				

We throw a single die, and define the following sample space and sets:

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{2, 4, 6\}$$

$$B = \{4, 5, 6\}$$

$$C = \{1\}$$
(1)

3

Then

$$A \cup B = \{2, 4, 5, 6\}$$

Florian Reiche

Outline	Why?	Counting	Sets ○○○○ ○○○○●○○○○○	Prob. Function	Odds
Operations on	Sets				
Intorco	ction of S	otc			

An intersection of Sets A and B, $A \cap B$, is the new set that contains all of the elements that belong to either A AND B

Formally

$$A \cap B = \{X : X \in A \text{ and } X \in B\}$$

Note that if $A \cap B = \phi$, then the two sets A and B are called *disjoint*.

Florian Reiche

Outline	Why?	Counting	Sets ○○○○ ○○○○○●○○○○	Prob. Function	Odds
Operations on	Sets				
Exampl	е				

We throw a single die, and define the following sample space and sets:

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{2, 4, 6\}$$

$$B = \{4, 5, 6\}$$

$$C = \{1\}$$
(2)

3

Then

$$A \cap B = \{4, 6\}$$

Florian Reiche

Outline	Why?	Counting	Sets ○○○○ ○○○○○●○○○	Prob. Function	Odds
Operations on	Sets				
Comple	ement of	Sets			

 A complement of a given set is the set that contains all elements not in the original set

Formally

 $A^C = \{X : X \notin A\}$

イロト イポト イヨト イヨト

2

Florian Reiche

Outline	Why?	Counting	Sets ○○○○ ○○○○○●○○	Prob. Function	Odds
Operations on S	Sets				
Example	e				

We throw a single die, and define the following sample space and sets:

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{2, 4, 6\}$$

$$B = \{4, 5, 6\}$$

$$C = \{1\}$$
(3)

3

Then

$$A^{C} = \{1, 3, 5\}$$

Florian Reiche

Outline	Why?	Counting	Sets ○○○○ ○○○○○○○○	Prob. Function	Odds
Operations on	Sets				
Difforo	nco Opor	ator			

- Defines which portion of a given set is NOT a member of the other
- ► The difference of *A* relative to *B* is the set of elements *X* whereby

$$A \setminus B = \{X : X \in A \text{ and } X \notin B$$

or
$$A \setminus B = A \cap B^{C}$$

・ロト ・四ト ・ヨト ・ ヨト

э.

Florian Reiche

Outline	Why?	Counting	Sets ○○○○○ ○○○○○○○○○	Prob. Function	Odds
Operations on	Sets				
Exampl	е				

We throw a single die, and define the following sample space and sets:

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{2, 4, 6\}$$

$$B = \{4, 5, 6\}$$

$$C = \{1\}$$
(4)

3

Then

$$A \setminus B = \{2\}$$
$$B \setminus A = \{5\}$$

Florian Reiche

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

The Probability Function & Calculations

▲口 > ▲圖 > ▲ 臣 > ▲ 臣 > 臣 のへで

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

The Probability Function

- Is a mapping of an event (or events) onto a metric bounded by zero (it cannot happen) and one (it will happen with absolute certainty).
- Allows us to discuss various degrees of likelihood of occurrence in a systematic and practical way

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Calculations with Probabilities

- Good news: Rules are straightforward
- For A and B in S
 - $\rightarrowtail \quad \mathsf{Probability} \ of \ \mathsf{Unions}$
 - $\rightarrowtail \quad \mathsf{Probability} \ of \ \mathsf{Intersections}$

Probability of Null Set

Probability of Complements

Probability of the Sample Space

 $p(A \cup B)$ $= p(A) + p(B) - p(A \cap B)$ $p(A \cap B)$ $= p(A) + p(B) - p(A \cup B)$ (also denoted p(A, B)) $p(A^{C}) = 1 - p(A),$ $p(A) = 1 - p(A^{C})$ $p(\phi) = 0$ $p(\mathcal{S}) = 1$ 3

Florian Reiche

 \rightarrow

 \rightarrow

 \rightarrow

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

The Theorem of Total Probability

▶ Given any events A and B,

 $p(A) = p(A \cap B) + p(A \cap B^{C})$

- Probability of an event A can be decomposed into two parts
 - One that intersects with another set B
 - One that intersects with the complement of *B*
- If there is no intersection or if B is a subset of A, then one of the two parts has probability zero.

Florian Reiche

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

Odds

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Why?	Counting	Sets 00000 000000000	Prob. Function	Odds

- Imagine a sample space with two outcomes: success and failure
- Actually quite common in social sciences: wars, marriages, memberships, crimes, etc.
- Let p(S) be the probability of success
- ▶ Then, the define the probability of failure as q = p(F) = 1 p
- Then, the odds of success are

$$odds(S) = \frac{p}{q}$$

Note: Odds are positive, but unbounded.