QS101: Introduction to Quantitative Methods in Social Science Week 14: Crosstabulations and Chi-Squared

Dr. Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression, PAIS

January 29, 2015

Dr. Florian Reiche

Outline	Crosstabulations	Independence and Dependence	Chi-Squared Test of Independence

Crosstabulations

Independence and Dependence

Chi-Squared Test of Independence

(ロト (聞) (言) (言) 三目 ののの

Dr. Florian Reiche

Outline	Crosstabulations	Independence and Dependence	Chi-Squared Test of Independence

Crosstabulations

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

What is a Crosstabulation (cross tab)?

- A Crosstab (AKA contingency table) serves for the analysis of categorical variables
- It displays the number of subjects observed at all combinations of possible outcomes for the two variables

< < >>

What does that look like?

Is there an association between gender and ice-cream flavour preference?

	Ice-Cream		
Gender	Chocolate	Vanilla	Total
Male Female	10 8	5 12	15 20
Total	18	17	35

The row totals and the column totals are called *marginal distributions*.

Dr. Florian Reiche

Percentage Comparisons

To study how ice-cream flavour preference depends on gender, we convert the frequencies to percentages within each row.

	Ice-Cream			
Gender	Chocolate	Vanilla	Total	n
Male Female	66.6% 40%	33.3% 60%	100% 100%	15 20

Percentage Comparisons (contd.)

- The two sets of percentages for males and females are called conditional distributions on ice-cream flavour.
- They refer to the sample data distribution of ice-cream flavour, conditional on gender.
- It is practice to form the conditional distribution for the response variable (here ice-cream flavour), within categories of the explanatory variable (here gender).

Good Practice for Cross Tabs

- We want to show the percentages of the response (dependent) variable, in the categories of the explanatory (independent) variable
- The dependent variable goes into the columns
- Clearly label the variable and the categories
- Include the total sample sizes on which the percentages are based

Outline Cro	osstabulations	Independence and Dependence	Chi-Squared Test of Independence

Independence and Dependence

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Crosstabulations	Independence and Dependence	Chi-Squared Test of Independence

- The question is now: Is there an association between ice-cream flavour and gender?
- Put more technically: are the population conditional distributions on one categorical variable identical at each category of the other variable?
- What would that look like?

æ

Statistical Independence

	n Flavours		
Gender	Chocolate	Vanilla	Total
Male Female	8 (51.4%) 10 (51.4%)	7 (48.6%) 10 (48.6%)	15 (100%) 20 (100%)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

This table is hypothetical - you will never see it.

Dr. Florian Reiche

2

・ロト ・四ト ・ヨト ・ヨト

Our initial table was a sample

æ

Queries

- Our initial table was a sample
- ▶ We would expect variability depending on the sample we draw

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

< < >>

Queries

- Our initial table was a sample
- ▶ We would expect variability depending on the sample we draw
- But what does the population look like?

Queries

- Our initial table was a sample
- ▶ We would expect variability depending on the sample we draw
- But what does the population look like?
- ► How plausible, given the sample, is it, that in the population gender and ice-cream flavour are independent?

We need a significance test!

- ► H₀: The variables are statistically independent
- ► *H*₁: The variables are statistically dependent

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	Crosstabulations	Independence and Dependence	Chi-Squared Test of Independence

Chi-Squared Test of Independence

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

The Chi-Squared Test

- ► The Chi-Squared (\chi^2) test compares the observed frequencies in the contingency table (our initial table) with values that satisfy the null hypothesis
- ► (The following table shows the observed frequencies, and the expected frequencies if H₀ was true in parentheses.

	Ice-Cream Flavours			
Gender	Chocolate	Vanilla	Total	
Male Female	10 (8) 8 (10)	5 (7) 12 (10)	15 20	
Total	18	17	35	

Dr. Florian Reiche

How did I calculate the expected values?

- Let f_o denote an observed frequency in a cell of the table.
- Let f_e denote an expected frequency.
- *f_e* is the count expected in a cell if the variables were independent.
- It equals the product of the row and the column totals for that cell, divided by the total sample size.
- ▶ E.g. 15 × 18/35

◆□▶ ◆□▶ ◆注▶ ◆注▶ ─注 ─ ����

The χ^2 test statistic

$$\chi^2 = \Sigma \frac{f_o - f_e}{f_e} \tag{1}$$

- We square the difference between the observed and expected frequency in a particular cell, and divide it by the expected frequency
- We sum the result from each cell up (That's what Σ does)
- If H_0 is true, then χ^2 is quite small
- The larger the χ^2 value...

Dr. Florian Reiche

The χ^2 test statistic

$$\chi^2 = \Sigma \frac{f_o - f_e}{f_e} \tag{2}$$

- We square the difference between the observed and expected frequency in a particular cell, and divide it by the expected frequency
- We sum the result from each cell up (That's what Σ does)
- If H_0 is true, then χ^2 is quite small
- ► The larger the \(\chi^2\) value, the greater the evidence against \(H_0: \) Independence

How do we interpret the magnitude of χ^2 ?

• The χ^2 distribution

▲ロト ▲聞ト ▲注ト ▲注ト - 注 - のへで

Dr. Florian Reiche OS101: Introduction to Quantitative Methods in Social Science

Dr. Florian Reiche

How do we interpret the magnitude of χ^2 ?

• The χ^2 distribution

QS101: Introduction to Quantitative Methods in Social Science

 Concentrated on the positive part of the real line (it cannot be negative!)

How do we interpret the magnitude of χ^2 ?

- The χ^2 distribution
- Concentrated on the positive part of the real line (it cannot be negative!)
- What is the minimal value and why?

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → 今へ⊙

How do we interpret the magnitude of χ^2 ?

- The χ^2 distribution
- Concentrated on the positive part of the real line (it cannot be negative!)
- What is the minimal value and why?
- It is skewed to the right

How do we interpret the magnitude of χ^2 ?

- The χ^2 distribution
- Concentrated on the positive part of the real line (it cannot be negative!)
- What is the minimal value and why?
- It is skewed to the right
- ▶ The precise shape depends on the *degrees of freedom* (df).

What are degrees of freedom?

► Given the marginal totals, the cell counts in a rectangular block of size (r − 1) × (c − 1) within the contingency table determine the other cell counts.

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

What are degrees of freedom?

- ▶ Given the marginal totals, the cell counts in a rectangular block of size (r − 1) × (c − 1) within the contingency table determine the other cell counts.
- More helpful: How many cells could I choose at freedom, before the marginal distributions determine the remaining cell values?

Where were we?

HERE!

- The χ^2 distribution
- Concentrated on the positive part of the real line (it cannot be negative!)
- It is skewed to the right
- ► The precise shape depends on the *degrees of freedom* (df).

イロト 不得下 イヨト イヨト

3

The χ^2 Distribution



Figure: The χ^2 Distribution (k=df)

Dr. Florian Reiche

▲ @ ▶ ▲ ■ ▶ ▲

Sample Size Requirements

- The χ^2 test is a large sample test
- Ergo: the χ^2 distribution is the sampling distribution of the χ^2 test only if the sample size is large
- ▶ Rogh guideline: the expected frequency f_e in each cell should exceed 5

Queries

- How strong is the association if χ^2 is returned significant?
- With this alone, we cannot tell
- We have no idea whether all cells deviate greatly from independence, or only one or two cells do so
- Solution: Agresti and Finlay, Sections 8.3.-8.4. HOMEWORK!