QS101: Introduction to Quantitative Methods in Social Science Week 15: Measures of Association: Correlation

Dr. Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression, PAIS

February 5, 2015

Dr. Florian Reiche

Recap

Correlation

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Dr. Florian Reiche

Recap

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへの

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

C	۱.	•+	16	'n	0
	,ι	1 L			6

Queries

• What is χ^2 ?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ⊙ Q @

Dr. Florian Reiche QS101: Introduction to Quantitative Methods i<u>n Social Science</u>

Queries

- What is χ^2 ?
- What are degrees of freedom?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Queries

- What is χ^2 ?
- What are degrees of freedom?
- What is the p-value?

Numbers and the Media

https://www.youtube.com/watch?v=oDPCmmZifE8

・ロト ・聞 ・ ・ 聞 ・ ・ 聞 ・ うらぐ

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Correlation

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ⊙ Q @

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Definition

- Correlation is a statistical tool that determines the degree of relationship between two different variables
- If correlation is strong, a person's score on one variable helps us predict the person's score on another variable
- It is limited with the range of -1 and +1

Classification of the Relationship

Pearson Correlation Coefficient

	Negative Correlation				Correla	ation I	Positive Correlation		
	Strong	Moderate	W	eak		We	ak Moo	lerate Strong	
-1	-0.3	8 -	-0.5	-0.2	0	0.2	0.5	0.8 1	

・ロト ・聞 ト ・ヨト ・ヨト ・ヨー めんの

Dr. Florian Reiche

Strong Positive Relationship

- The higher the score on one variable, the higher the score on the other variable
- The lower the score on one variable, the lower the score on the other variable.

Example: Time spent on revision, and exam mark.

Strong Negative Relationship

- The higher the score on one variable, the lower the score on the other variable
- The lower the score on one variable, the higher the score on the other variable.

Example: Time spent in the Dirty Duck, and module mark.

No Relationship

- Correlation coefficient (r) = 0
- Here, the score on one variable tells you nothing about the score on the other variable

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in <u>Social Science</u> ▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲ 目 → の Q ()・

Correlation and Causation

Dr. Florian Reiche

Dr. Florian Reiche

Dr. Florian Reiche

Why bother then?

- > You can never show a cause-effect relationship with correlation
- > Yet, you can get an idea about the data, and patterns within in
- This can help you develop ideas about cause-effect relationships

4 Types of correlation

- Pearson's r: A measure of the strength of a relationship between two continuous variables
- Spearman's r: A measure of the similarity between two ordinal rankings of a single set of data
- Point-biseral r: A measure of the strength of the relationship between one continuous variable and one dichotomous variable (e.g. gender, democracy, etc.)
- Phi (\u03c6) correlation: A measure of the strength of the relationship between two dichotomous variables

The Pearson Product-Moment Correlation Coefficient

Is the most commonly employed measure:

$$r = \frac{N\Sigma xv - (\Sigma x)(\Sigma y)}{\sqrt{(N\Sigma x^2 - (\Sigma x)^2)(N\Sigma y^2 - (\Sigma y)^2)}}$$
(1)

N: Number of pairs of scores

▲口×▲圖×▲注×▲注× 注 シの()

Dr. Florian Reiche

Subject	Cigarettes	Years Lived		
1	25	63		
2	35	68		
3	10	72		
4	40	62		
5	85	65		
6	75	46		
7	60	51		
8	45	60		
9	50	55		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の�?

Dr. Florian Reiche

Example contd.

For example:

 $\Sigma x = 25 + 35 + 10 + 40 + 85 + 75 + 60 + 45 + 50 = 425$

etc.

$$r = \frac{(9)(24,640) - (425)(542)}{\sqrt{((9)(24,525) - (425)^2)((9)(33,188) - (542)^2)}}$$
$$r = -0.6111$$
$$r = -0.61$$

イロン イロン イヨン イヨン

Ξ.

Dr. Florian Reiche

The Pearson Product-Moment Correlation Coefficient

- ▶ Obtained for a sample drawn from the population, denoted *r*
- The population value is called rho (ρ)
- We are therefore interested in:
 - *H*₀ : ρ = 0
 - *H_a* : ρ ≠ 0

《曰》 《國》 《문》 《문》 문

Significance Test

- Uses the t-distribution (if you do not know what this is, read up on it, now!)
- The t-test formula for a correlation coefficient is as follows:

$$t = \frac{r}{\sqrt{\frac{1-r^2}{N-2}}} \tag{2}$$

イロト イポト イヨト イヨト

- ▶ This would give you the critical value (just like with χ^2 last week)
- Calculate the degrees of freedom (here: df = N 2)
- You choose a level of significance, find the critical value, compare the values and decide

3

Example contd.

$$t = \frac{r}{\sqrt{\frac{1-r^2}{N-2}}}$$
$$t = \frac{-0.6111}{\sqrt{\frac{1-(-0.6111)^2}{9-2}}}$$
$$t = -2.042$$

Image: A math a math

- We want 95% significance level
- Critical value for df = 7: t = +2.365 and -2.365
- Is this significant?

Example contd.

$$t = \frac{r}{\sqrt{\frac{1-r^2}{N-2}}}$$
$$t = \frac{-0.6111}{\sqrt{\frac{1-(-0.6111)^2}{9-2}}}$$
$$t = -2.042$$

- We want 95% significance level
- Critical value for df = 7: t = +2.365 and t = -2.365
- Is this significant? No!

The other 3 Measures

- Spearman: Coolidge, pp. 204-206
- ▶ Point Biseral: Coolidge, pp. 208-212
- ϕ correlation: Coolidge, pp. 212-213

Dr. Florian Reiche