Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
	QS101: Intr	oduction to	Quantitative Methods i	n
		Social	Science	
		Social	Science	
	Week 17: Com	paring Groups	- Analysis of Variance (ANOVA	

Dr. Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression, PAIS

February 19, 2015

Dr. Florian Reiche

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Recap

ANOVA

Two-Way Analysis of Variance

Effects of Violations of ANOVA Assumptions

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 … のへで

Dr. Florian Reiche

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Recap

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへの

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Queries				

2

・ロト ・四ト ・ヨト ・ヨト

What is the range of a correlation coefficient?

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
-				
Queries				

- What is the range of a correlation coefficient?
- Which is the most commonly employed correlation coefficient?

3

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
~ ·				
Queries				

- What is the range of a correlation coefficient?
- Which is the most commonly employed correlation coefficient?

э

Which distribution does the test of significance for a correlation use?

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

ANOVA

(日) (四) (三) (三) (三) (三) (○)

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Introdu	iction			

 Objective: We want to establish whether there is an association between a quantitative dependent variable and a categorical independent variables

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Introdu	uction			

- Objective: We want to establish whether there is an association between a quantitative dependent variable and a categorical independent variables
- Comparison of mean annual income between whites, blacks, and Hispanics

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
l n t r n d u				

- Objective: We want to establish whether there is an association between a quantitative dependent variable and a categorical independent variables
- Comparison of mean annual income between whites, blacks, and Hispanics
- What is the dependent variable here?

INTRODUCTION

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Notatio	on			

• Let g denote the number of groups we want to compare

э.

メロト メタト メヨト メ

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
•••				
Motatic	n			

- Let g denote the number of groups we want to compare
- The means of the dependent variable for the corresponding populations are denoted as μ₁, μ₂, μ₃, ..., μ_g

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Mototic	n n			

- Let g denote the number of groups we want to compare
- The means of the dependent variable for the corresponding populations are denoted as μ₁, μ₂, μ₃, ..., μ_g
- The sample means are denoted as \bar{y}_1 , \bar{y}_2 , \bar{y}_3 , ..., \bar{y}_g

лацон

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Hypotheses

•
$$H_0: \mu_1 = \mu_2 = \mu_3 = \ldots = \mu_g$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Dr. Florian Reiche

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Hypotheses

•
$$H_0: \mu_1 = \mu_2 = \mu_3 = \ldots = \mu_g$$

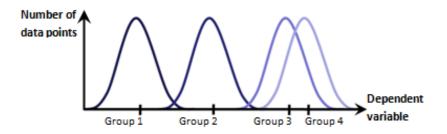
• H_a : at least two of the population means are unequal

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Assum	ptions			

 For each group, the population distribution of the dependent variable y is normal

æ

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Assum	ntions			


- For each group, the population distribution of the dependent variable y is normal
- The standard deviation of the population distribution is the same for each group. The common value is denoted by σ

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Assum	otions			

- For each group, the population distribution of the dependent variable y is normal
- \blacktriangleright The standard deviation of the population distribution is the same for each group. The common value is denoted by σ
- The samples from the population are *independent* random samples

Assumptions (contd.)

▲ロト ▲圖ト ▲画ト ▲画ト 三画 - 釣A@

Dr. Florian Reiche

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
<u> </u>				

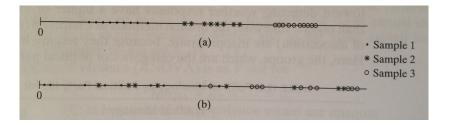
Of means and variance . . .

 \blacktriangleright Comparison of means is done by using two estimates of the variance, σ^2

3

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
~ (

Of means and variance . . .


- \blacktriangleright Comparison of means is done by using two estimates of the variance, σ^2
- One estimate uses the variability between each sample mean y
 i
 i and the overall sample mean y
 i

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Of means and variance . . .

- \blacktriangleright Comparison of means is done by using two estimates of the variance, σ^2
- One estimate uses the variability between each sample mean \bar{y}_i and the overall sample mean \bar{y}
- The other estimate uses the variability within each group of the sample observations about their separate means

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Dr. Florian Reiche

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
F Tost	Statistic			

The F Test Statistic is a ratio of two variance estimates

$$F = \frac{\text{Between-groups estimate of variance}}{\text{Within-groups estimate of variance}}$$

) () ()

(1)

3

This is called the ANOVA F statistic

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Results				
Results				

(日) (四) (三) (三)

3

• If H_0 is true, then the F test statistic is equal to 1

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Results				

- If H_0 is true, then the F test statistic is equal to 1
- ▶ If H_0 is false, then the between-groups estimate will be larger, as it tends to overestimate σ^2

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Results				

- If H_0 is true, then the F test statistic is equal to 1
- ▶ If H_0 is false, then the between-groups estimate will be larger, as it tends to overestimate σ^2
- F test statistic has an F sampling distribution, with right hand probability for the p-value
- We will return to the F distribution next week when we tackle regression

How are the Variances Calculated?

- If you want to know how the within-group and between-group variance is calculated, turn to pp. 373-375 in Agresti and Finlay
- In Stata tables the results of the two variance estimates are presented as Mean Square (sum of squares, divided by df)

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Exampl	е			

. oneway a_fimngrs_dv a_sex, bonferroni tabulate

	Summary of tot incom	tal monthly ne – gross	/ personal		
sex	Mean S	Std. Dev.	Freq.		
male	1820.5414	1895.08	16461		
female	1242.8595	1245.0425	19308		
Total	1508.7104	L603.8469	35769		
	Analy	/sis of Van	riance		
Source	SS	df	MS	F	Prob > F
Between groups	2.9653e+0	9 1	2.9653e+09	1191.11	0.0000
Within groups	8.9042e+1	LØ 35767	2489491.5		
Total	9.2007e+1	LØ 35768	2572324.75		

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Dr. Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

1

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Interpretation of Example

What is the p-value?

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Interpretation of Example

- What is the p-value?
- What does this tell us?

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Interpretation of Example

- What is the p-value?
- What does this tell us?
- There is a difference amongst the population mean income for the two genders.

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

F-test versus several t-tests

• For g = 2 the tests are identical

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

F-test versus several t-tests

- For g = 2 the tests are identical
- For g > 2, only the F test allows us to control the probability of the type I error

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Two-Way Analysis of Variance

Let's Make Things more Realistic

Usually we want to control for other influences

Let's Make Things more Realistic

- Usually we want to control for other influences
- This creates sub-groups, such as white male, white female, black male, black female, and so forth

Let's Make Things more Realistic

- Usually we want to control for other influences
- This creates sub-groups, such as white male, white female, black male, black female, and so forth
- In order to compare population means across categories of two independent variables, we can perform a two-way ANOVA

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations
Exampl	e			

Let's compare the mean income of students from different courses, controlling for gender:

	Сои	Course of Study			
Gender	Sociology	Politics	Q-Step		
Male Female	25,000 24,000	28,000 29,000	30,000 29,000		

We can also use this to compare income between gender, controlling for course of study (compare within columns).

QS101: Introduction to Quantitative Methods in Social Science

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

If these had no effect, the Table would look as follows: No effect of course of study (a), no effect of gender (b)

		Course of Study		
	Gender	Sociology	Politics	Q-Step
(a)	Male	25,000	25,000	25,000
	Female	24,000	24,000	24,000
(b)	Male	25,000	28,000	30,000
	Female	25,000	28,000	30,000

QS101: Introduction to Quantitative Methods in Social Science

F Tests about Main Effects

The effects of individual predictors tested in these two null hypotheses are called *main effects*

F Tests about Main Effects

- The effects of individual predictors tested in these two null hypotheses are called *main effects*
- Assumptions are the same as for one-way ANOVA

F Tests about Main Effects

- The effects of individual predictors tested in these two null hypotheses are called *main effects*
- Assumptions are the same as for one-way ANOVA
- This time, you really don't want to see the maths behind it

What's the Setup?

The F Test Statistic is the ratio of mean squares

$$F = \frac{\text{MS for the predictor}}{\text{MS error (MSE)}}$$
(2)

Remember: Mean Squares = Sum of Squares divided by degrees of freedom.

QS101: Introduction to Quantitative Methods in Social Science

Interaction in Two-Way ANOVA

An absence of interaction between two independent variables means that the effects of of either variable on the dependent variable (in the population) does not change for different levels of the other.

Interaction in Two-Way ANOVA

- An absence of interaction between two independent variables means that the effects of of either variable on the dependent variable (in the population) does not change for different levels of the other.
- It is not meaningful to test for the main effects hypotheses if interaction exists

Interaction in Two-Way ANOVA

- An absence of interaction between two independent variables means that the effects of of either variable on the dependent variable (in the population) does not change for different levels of the other.
- It is not meaningful to test for the main effects hypotheses if interaction exists
- Here, we would conclude that each variable has an effect, but that the nature of that effect changes according to the category of the other variable.

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

◆□▶ ◆□▶ ◆注▶ ◆注▶ ─注 ─ のへで

First Things First

We therefore test for interaction first

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

- ▶ We therefore test for interaction first
- If interaction does not exist, we can do the main effects

æ

First Things First

- We therefore test for interaction first
- If interaction does not exist, we can do the main effects
- If interaction does exist, it is better to compare the means for one predictor separately within categories of the other

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

Effects of Violations of ANOVA Assumptions

▲口 > ▲圖 > ▲目 > ▲目 > 三目 - 20ペラ

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Recap: Assumptions

- For each group, the population distribution of the dependent variable y is normal
- The standard deviation of the population distribution is the same for each group. The common value is denoted by σ
- The samples from the population are *independent* random samples

Recap: Assumptions

- For each group, the population distribution of the dependent variable y is normal
- The standard deviation of the population distribution is the same for each group. The common value is denoted by σ
- The samples from the population are *independent* random samples

These are never exactly met in practice.

 Moderate departures from normality of the population distribution can be tolerated

- Moderate departures from normality of the population distribution can be tolerated
- Moderate departures from equal standard deviations can also be tolerated (esp. if sample sizes are identical)

- Moderate departures from normality of the population distribution can be tolerated
- Moderate departures from equal standard deviations can also be tolerated (esp. if sample sizes are identical)
- Check histograms to make sure these assumptions are satisfied

- Moderate departures from normality of the population distribution can be tolerated
- Moderate departures from equal standard deviations can also be tolerated (esp. if sample sizes are identical)
- Check histograms to make sure these assumptions are satisfied
- ANOVA procedures are NOT robust to violations of sampling assumptions

Misleading Results MAY Occur, if ...

 ... the population distributions are highly skewed and the sample size is small

Misleading Results MAY Occur, if ...

- ... the population distributions are highly skewed and the sample size is small
- ... large differences amongst the population standard deviations and the sample sizes are unequal

Outline	Recap	ANOVA	Two-Way Analysis of Variance	Violations

What to do then?

Non-parametric approaches exist, such as the Kruskal-Wallis Test

3