QS101: Introduction to Quantitative Methods in Social Science

Week 14: Assessment 2 & Cross Tabulations

Dr. Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression

January 30, 2015

Introduction to Assessment 2

Introducing the Data Set

Working with Data: Cross Tabulations

Introduction to Assessment 2

Assessment: Task

- ► Research Question: How do socio-demographic factors influence income in the UK?
- ► Task: Develop a report of no more than 2,500 words (excluding graphs, tables and footnotes). As a guide, the report is expected to outline the following six issues:

Assessment: Structure

- 1. Introduce the Research Question explaining how it relates to existing research and how you will test the expectations of theory based on a Literature Review
- Develop up to three testable hypotheses out of the theoretical framework adopted
- 3. Operationalisation & measurement of theoretical concepts
- 4. Methodology. What specific techniques will you use?
- 5. Analysis of the data, interpretation of results
- 6. Discussion and Conclusions: What are the implications of your results for the theory? Is it supported/falsified? Recommendations for improving future research?

Introducing the Data Set

The data set – formalities

- ▶ The data set we used is called: Understanding Society
- It contains a variety of variables which allows a broad variety of hypotheses to explore
- The data sets are available on the module homepage
- Here you will also find a Word document outlining the variables available, and their labels

Three Waves

- ► There are three waves available:
 - ► A: 2009 / 10
 - ▶ B: 2010 / 11
 - ► C: 2011 / 12

Three Waves

- ► There are three waves available:
 - ► A: 2009 / 10
 - ▶ B: 2010 / 11
 - ► C: 2011 / 12
- ► Select ONE wave

Three Waves

- ► There are three waves available:
 - ► A: 2009 / 10
 - ▶ B: 2010 / 11
 - ► C: 2011 / 12
- Select ONE wave
- ONLY ONE WAVE!

How do the Waves differ?

- ▶ A large amount of variables is available in all three waves.
- If you select one of these variables, then it does not matter, which wave you choose (most recent would be desirable, however)
- Still: Only choose ONE wave!
- Some variables are only available in one particular wave. So if you are interested in the influence of such a variable, this determines the wave.

Notes of Importance

▶ Due date: 05.05.2015, 2PM

Notes of Importance

▶ Due date: 05.05.2015, 2PM

► Feedback deadline: 01.05.2015

Notes of Importance

▶ Due date: 05.05.2015, 2PM

► Feedback deadline: 01.05.2015

Formatting

- ▶ Due date: 05.05.2015, 2PM
- ► Feedback deadline: 01.05.2015
- Formatting
- ► Spell check

- ▶ Due date: 05.05.2015, 2PM
- ► Feedback deadline: 01.05.2015
- Formatting
- Spell check
- Referencing (incl. the data set)

- ▶ Due date: 05.05.2015, 2PM
- ► Feedback deadline: 01.05.2015
- Formatting
- Spell check
- Referencing (incl. the data set)
- Proof, correlation & co.

- ▶ Due date: 05.05.2015, 2PM
- ► Feedback deadline: 01.05.2015
- Formatting
- Spell check
- Referencing (incl. the data set)
- Proof, correlation & co.
- Advice and Feedback Hours

Registration

You need to register for the use of the data sets.

Working with Data: Cross Tabulations

How to do a Crosstab in Stata

- ▶ The command is beguilingly easy:
 - ▶ tabulate rowvar columvar, row
- row tells Stata to sum percentages up in the rows

An Example

. tabulate a_sex a_employ, row

frequency row percentage

	in paid employment						
sex	missing	refused	don't kno	yes	no	Total	
male	1	1	1	9,491	6,967	16,461	
	0.01	0.01	0.01	57.66	42.32	100.00	
female	0	0	3	9,352	9,953	19,308	
	0.00	0.00	0.02	48.44	51.55	100.00	
Total	1	1	4	18,843	16,920	35,769	
	0.00	0.00	0.01	52.68	47.30	100.00	

Replicate this result.

And what about χ^2 ?

- ▶ We need to extend the initial command:
 - ▶ tabulate rowvar columvar, chi2 row
- You can also get the expected values by typing chi2 expected row after the comma

Example again

. tabulate a_sex a_employ, chi2 row

Key
frequency
row percentage

	in paid employment						
sex	missing	refused	don't kno	yes	no	Total	
male	1	1	1	9,491	6,967	16,461	
	0.01	0.01	0.01	57.66	42.32	100.00	
female	0	0	3	9,352	9,953	19,308	
	0.00	0.00	0.02	48.44	51.55	100.00	
Total	1	1	4	18,843	16,920	35,769	
	0.00	0.00	0.01	52.68	47.30	100.00	

Pearson chi2(4) = 306.3236 Pr = 0.000

▶ Is this statistically significant?

- ► Is this statistically significant?
- ▶ Is this statistically significant at the 95% level?

- ► Is this statistically significant?
- ▶ Is this statistically significant at the 95% level?
- ► Replicate!

Is it always this easy?

► Alas, no...

Is it always this easy?

- ► Alas, no...
- Sometimes variables have loads of categories

Is it always this easy?

- ► Alas, no...
- Sometimes variables have loads of categories
- ▶ Then we need to recode

How to recode?

- See Section 3.5. in the Acock book
- Book explains how to recode categorical variables
- Example: recode a_sex (# = #)

Recoding Commands for Categorical Variables

rule	Example	Meaning
(# = #) (# # = #) (#/# = #) (<u>nonm</u> issing = #) (<u>mis</u> sing = #)	(3 = 1) (2 . = 9) (1/5 = 4) (nonmiss = 8) (miss = 9)	3 recoded to 1 2 and . recoded to 9 1 through 5 recoded to 4 all other nonmissing to 8 all other missings to 9

Recoding continuous into categorical variables

- ► Assume we want to turn the continuous variable on gross personal income into categories
- ▶ For this, we use the following command:
- Example: egen incomecat = cut(a_fimngrs_dv),
 at(0,2500,5000,7500,10000,12500,15000)
- ▶ This creates categories, such as
 - "0 up to (but not including) 2500"
 - "2500 up to (but not including) 5000"
 - etc.

Example

. tabulate a_sex incomecat, chi2 row

frequency row percentage

			income	cat			
sex	0	2500	5000	7500	10000	12500	Total
male	12,675	2,897	520	161	53	38	16,344
	77.55	17.73	3.18	0.99	0.32	0.23	100.00
female	17,260	1,760	179	39	25	4	19,267
	89.58	9.13	0.93	0.20	0.13	0.02	100.00
Total	29,935	4,657	699	200	78	42	35,611
	84.06	13.08	1.96	0.56	0.22	0.12	100.00

Pearson chi2(5) = 1.0e+03 Pr = 0.000

▶ Is this statistically significant at the 95% level?

Queries

- ▶ Is this statistically significant at the 95% level?
- ▶ Is this statistically significant at the 99% level?

Queries

- ▶ Is this statistically significant at the 95% level?
- ▶ Is this statistically significant at the 99% level?
- ► Replicate!

