QS101: Introduction to Quantitative Methods in Social Science

Week 15: Measures of Association – Correlation

Dr. Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression

February 6, 2015

Assessment 2

Formatting Tables and Graphs

Missing Values

Correlation

Assessment 2

Correlation

Assessment: Task

- ▶ Which socio-demographic factors are you looking at?
- ▶ Which variables are you choosing for this?

Formatting Tables and Graphs

Missing Values

Reasons for Missing Data

- ► Interviewee refused the answer
- Interviewer forgot to ask
- Equipment failed
- **>** . . .

Coding of Missing Data

- ▶ When you code data, you might just give it a random number, such as -9
- Stata recognises missing data only in the form of a dot, for example . or .a
- ► The letters allow you to code different reasons for why the data are missing
- Stata command is mvdecode, see Acock book, chapter 3

Example

rgdpch	grgdpch	land	pop	death	birth	fuelx	agri	yrtsch	conc	oilexp
3210.802	-3.938805	1246700	5885.455		52.1404				.491	6
3008.608	-6.297315	1246700	5943.466						.484	9
2943.087	-2.177778	1246700	6163.714	24.981	52.366				.484	9
2757.634	-6.301311	1246700	6287.18						.35	6
2730.219	9941382	1246700	6452.546						.35	6
2516.246	-7.837218	1246700	6743.08	24.7938	52.6726				.35	6
2384.475	-5.236808	1246700	6879.574							6
2453.734	2.904586	1246700	7018.526	24.669	52.877				.874	9
2474.558	.8486423	1246700	7240.535						.874	6
2739.029	10.6876	1246700	7442.448						.874	6
2633.564	-3.85043	1246700	7584.709	24.6666	53.0168		13.4		.874	6
2830.181	7.465817	1246700	7748.632				14.2		.874	9
2971.034	4.976814	1246700	7878.396	24.665	53.11		12.8		.887	9
3158.241	6.301059	1246700	8023.39				15.8		.9	9
3015.413	-4.5224	1246700	8153.844				19.1		.9055	6
2962.883	-1.742024	1246700	8296.606	24.1208	52.7212		17.9		.911	6
3181.842	7.390052	1246700	8496.81							
3049.962	-4.14477	1246700	8741.838	23.758	52.462					
2045.445	-32.93538	1246700	8966.258							
2142.351	4.737625	1246700	9172.28							
2473.534	15.45888	1246700	9419.124	23.0506	50.3782					
2566.742	3.768212	1246700	9650.607							
2996.92	16.75968	1246700	9855.579	22.579	48.989					
2522.227	-15.83937	1246700	10039.17							
3058.969	21.28048	1246700	10215.44							
2901.421	-5.15034	1246700	10377.27	22.2856	48.7574					
2570.318	-11.41177	1246700	10538.39							
2992.343	16.41919	1246700	10760.51	22.09	48.603					

Implications

- Stata uses listwise deletion for missing values
- This means, that as soon as one value within an observation is missing, Stata drops that entire observation
- This can potentially decimate the number of observations for analysis drastically
- ▶ This in turn has implications for inference

What to do?

- ▶ Be vigilant!
- ► There are statistical methods to deal with this, such as multiple imputation (too advanced for now)

Correlation

Stata Commands

- Stata has two commands:
 - correlate
 - pwcorr

correlate

- ▶ Uses listwise deletion if any value of an observation is missing.
- ► Disadvantage: very few options
- Advantage: You are always operating with the same sub-sample

pwcorr

- ▶ Much more powerful command than correlate
- Advantage: You can apply different options
- Disadvantage: You need to pay more attention

How to do it

- ► It's simple!
- ▶ correlate var1 var2 var3
- ▶ pwcorr var1 var2 var3, listwise sig star(5)

Example

pwcorr a_fimngrs_dv a_agegr10_dv a_sex a_jbhrs, listwise sig star(5)

. pwcorr a_fimngrs_dv a_agegr10_dv a_sex a_jbhrs, listwise sig star(5)

```
a fimng~ a ageg~v a sex a jbhrs
a_fimngrs_dv
                 1.0000
a agegr10 dv
                -0.0028
                          1.0000
                 0.5945
                -0.1795* -0.0067
                                   1.0000
       a_sex
                 0.0000
                          0.2073
     a jbhrs
                 0.4205* -0.3085* -0.1095*
                                            1.0000
                          0.0000
                                   0.0000
                 0.0000
```


Queries

What does the coefficient on a_fimngrs_dv and a_sex tell us?

- ▶ What does the coefficient on a_fimngrs_dv and a_sex tell us?
- ► Is it significant?

- ▶ What does the coefficient on a_fimngrs_dv and a_sex tell us?
- Is it significant?
- What does that mean?

- ▶ What does the coefficient on a_fimngrs_dv and a_sex tell us?
- Is it significant?
- What does that mean?
- What does the coefficient on a_fimngrs_dv and a_jbhrs tell us?

- What does the coefficient on a_fimngrs_dv and a_sex tell us?
- Is it significant?
- What does that mean?
- What does the coefficient on a_fimngrs_dv and a_jbhrs tell us?
- ▶ Is it significant?

- ▶ What does the coefficient on a_fimngrs_dv and a_sex tell us?
- Is it significant?
- What does that mean?
- What does the coefficient on a_fimngrs_dv and a_jbhrs tell us?
- ▶ Is it significant?
- What does that mean?

REPLICATE!

Task

