QS101: Introduction to Quantitative Methods in Social Science
Week 17: Comparing Groups - Analysis of Variance (ANOVA)
Dr. Florian Reiche
Teaching Fellow in Quantitative Methods
Course Director BA Politics and Sociology
Deputy Director of Student Experience and Progression

One-Way ANOVA

Two-Way ANOVA

2

February 20, 2015

イロト イヨト イヨト イヨト

Dr. Florian Reiche

Outline

QS101: Introduction to Quantitative Methods in Social Science

Assessment

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA

Assessment 2

One-Way ANOVA

Two-Way ANOVA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Dr. Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

Assessment 2

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ⊙ Q @

Dr. Florian Reiche QS101: Introduction to Quantitative Methods i<u>n Social Science</u>

æ

< □ > < 同 > < 三 > <

Assessment: Task

- Which socio-demographic factors are you looking at?
- Which variables are you choosing for this?

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

One-Way ANOVA

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

Stata's command for a one-way ANOVA is pretty straightforward

- Stata's command for a one-way ANOVA is pretty straightforward
- oneway depvar indepvar, bonferroni tabulate

э

< < >>

- Stata's command for a one-way ANOVA is pretty straightforward
- oneway depvar indepvar, bonferroni tabulate
- Who is Bonferroni?

문어 문

Who is Bonferroni?

Bonferroni is one of many multiple-comparison tests

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Who is Bonferroni?

- Bonferroni is one of many multiple-comparison tests
- So far, we know, that if the p-value is small, we know that the means are different

Who is Bonferroni?

- Bonferroni is one of many multiple-comparison tests
- So far, we know, that if the p-value is small, we know that the means are different
- What we do not know, is how different they are

Constructing Confidence Intervals

 To answer this question, we can estimate the population means and construct confidence intervals around them (see Section 12.2. in Agresti and Finlay for this)

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Constructing Confidence Intervals

- To answer this question, we can estimate the population means and construct confidence intervals around them (see Section 12.2. in Agresti and Finlay for this)
- If we know these means and their confidence intervals, we can also say within which range the difference between the means lies

- 4 🗇 🕨 🔺 🖹 🕨 🤘

Constructing Confidence Intervals

- To answer this question, we can estimate the population means and construct confidence intervals around them (see Section 12.2. in Agresti and Finlay for this)
- If we know these means and their confidence intervals, we can also say within which range the difference between the means lies
- If we hypothesise that the means should be different, this range must not contain zero

Outline /	Assessment	One-Way ANOVA	Two-Way ANOVA
Problems			

 If we have many groups (for example, blacks, whites, Hispanis, etc.), we also have many comparisons

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Problems			

- If we have many groups (for example, blacks, whites, Hispanis, etc.), we also have many comparisons
- To be precise: g(g-1)/2 comparisons

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Problems			

- If we have many groups (for example, blacks, whites, Hispanis, etc.), we also have many comparisons
- To be precise: g(g-1)/2 comparisons
- For g = 10 we have 45 comparisons

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Problems			

- If we have many groups (for example, blacks, whites, Hispanis, etc.), we also have many comparisons
- To be precise: g(g-1)/2 comparisons
- For g = 10 we have 45 comparisons
- ► If we apply a 95% confidence interval, we would expect that 45 × 0.05 = 2.25 of the intervals would not contain the true differences of the means

(日) (同) (三) (三)

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Conclusion			

The larger the number of groups to compare, the greater is the chance of at least one incorrect inference

э

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Conclusion			
Conclusion			

- The larger the number of groups to compare, the greater is the chance of at least one incorrect inference
- There are methods to correct this, they are called Multiple Comparisons of Means

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Conclusion			

- The larger the number of groups to compare, the greater is the chance of at least one incorrect inference
- There are methods to correct this, they are called Multiple Comparisons of Means
- Bonferroni is one such method

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Conclusion			

- The larger the number of groups to compare, the greater is the chance of at least one incorrect inference
- There are methods to correct this, they are called Multiple Comparisons of Means
- Bonferroni is one such method
- It adjusts the confidence intervals of each comparison of means upwards, so as to arrive at the overall desired level of confidence

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Fxample			

メロト メタト メヨト メヨト

2

▶ We want 95% confidence level overall

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Example			

- We want 95% confidence level overall
- We have 3 groups (g = 3), and hence 3(3 − 1)/2 = 3 comparisons

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Example

- ► We want 95% confidence level overall
- We have 3 groups (g = 3), and hence 3(3 − 1)/2 = 3 comparisons
- Bonferroni would use error probability 0.05/3 = 0.0167 for each interval

Output

. oneway a_fimngrs_dv a_sex, bonferroni tabulate

	Summ	ary of t	total mor	ithly	personal			
		in	:ome – gr	055				
sex	:	Mean	Std. De	ev.	Freq			
male	182	0.5414	1895.	. 08	1646	- 1		
female	124	2.8595	1245.04	125	1930	8		
Tota	1 150	8.7104	1603.84	469	3576	9		
		An	alysis of	f Var:	iance			
Source		55		df	MS		FF	rob > F
Between gr	oups	2.9653	2+09	1	2.9653e+	99 1191	. 11	0.0000
Within gr	oups	8.9042	e+10 357	67	2489491	. 5		
Total		9.2007	e+10 357	/68	2572324.	75		
Bartlett's	test for	equal	ariances	i: cl	hi2(1) =	3.1e+03	Prob>0	chi2 = 0.000
C	omparison	of tota	al month) (Br	y pe	rsonal in roni)	come – gr	oss by	sex
Row Mean-			(00	, in com				
Col Mean	male							
female	-577.6	82						

-577.682

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Dr. Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Explanation			

 First tabulation shows the mean income, standard deviation and frequency (here equal to n) for each sex

3

Explanation

- First tabulation shows the mean income, standard deviation and frequency (here equal to n) for each sex
- What can we learn from this?

Explanation

- First tabulation shows the mean income, standard deviation and frequency (here equal to n) for each sex
- What can we learn from this?
- What problem with regards to the standard deviation might occur?

ANOVA Table

 Source: within-groups variance should be small, between-groups variance should be large

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

- Source: within-groups variance should be small, between-groups variance should be large
- ► Why?

- Source: within-groups variance should be small, between-groups variance should be large
- ► Why?
- Between Group Mean Square is the estimated population variance based on differences between groups

- Source: within-groups variance should be small, between-groups variance should be large
- ► Why?
- Between Group Mean Square is the estimated population variance based on differences between groups
- Again, this should be large

- Source: within-groups variance should be small, between-groups variance should be large
- ► Why?
- Between Group Mean Square is the estimated population variance based on differences between groups
- Again, this should be large
- What does the p-value tell us?

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Final table	٠ •		

 Bartlett's test for equal variance tests if the variances of the dependent variable are equal in both groups

Final table

- Bartlett's test for equal variance tests if the variances of the dependent variable are equal in both groups
- The data do not meet this assumption here

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Final table

- Bartlett's test for equal variance tests if the variances of the dependent variable are equal in both groups
- The data do not meet this assumption here
- The test is less important with large samples, like this one, however, and is therefore often ignored

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Your Tur	nl		

 Look at your independent variables and perform an ANOVA with income for each of them

< 🗆 > < 🗗

3

Your Turn!

- Look at your independent variables and perform an ANOVA with income for each of them
- Interpret the results of each table, and consider the implications for your research project

Your Turn!

- Look at your independent variables and perform an ANOVA with income for each of them
- Interpret the results of each table, and consider the implications for your research project
- Be ready to present some results for the seminar group.

Two-Way ANOVA

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA

2

.≣...>

メロト メタト メヨト メ

Again, the Stata command is straightforward

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA

3

- Again, the Stata command is straightforward
- anova depvar indepvar1 indepvar2

æ

- Again, the Stata command is straightforward
- anova depvar indepvar1 indepvar2
- This time, we only get one table

Example

anova a_fimngrs_dv a_sex	a_drive				
	Number of obs Root MSE	= = 15	35755 30.48	R-squared Adj R-squared	= 0.0896 = 0.0895
Source	Partial SS	df	MS	F	Prob > F
Model	8.2405e+09	2	4.1202e+0	9 1759.00	0.0000
a_sex a_drive	1.6220e+09 5.2768e+09	1 1	1.6220e+0 5.2768e+0	9 692.47 9 2252.78	0.0000 0.0000
Residual	8.3744e+10 3	5752	2342366.	4	
Total	9.1985e+10 3	5754	2572711.9	4	

. a

(ロ) (四) (三) (三) 2

Dr. Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Queries			

A D F A A F F A

3

Are our independent variables significant?

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Queries			

- Are our independent variables significant?
- What does this mean?

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Queries			

- Are our independent variables significant?
- What does this mean?
 - There is evidence that income varies by sex, within driving categories

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
-			
Queries			

- Are our independent variables significant?
- What does this mean?
 - There is evidence that income varies by sex, within driving categories
- What's missing here?

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
•			
Queries			

- Are our independent variables significant?
- What does this mean?
 - There is evidence that income varies by sex, within driving categories
- What's missing here?
 - The interaction

Example

. anova a_fimngrs_dv a_sex a_drive a_sex#a_drive

	Number of ob)s =	35755 R-s	quared	= 0.0953
	Root MSE	= 15	25.67 Adj	R-squared	= 0.0952
Source	Partial SS	df	MS	F	Prob > F
Model	8.7685e+09	3	2.9228e+09	1255.69	0.0000
2 507	691630714	1	691630714	297 14	0 0000
a_drive	5.7808e+09	1	5.7808e+09	2483.52	0.0000
a_sex#a_drive	528006842	1	528006842	226.84	0.0000
Residual	8.3216e+10	35751	2327662.91		
Total	9.1985e+10	35754	2572711.94		

(日) (四) (三) (三) (三) (三) (○)

Dr. Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

Is the Interaction significant?

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science ・ロト ・四ト ・ヨト ・ヨト ・ 日・ うらぐ

- Is the Interaction significant?
- What does this mean?

- Is the Interaction significant?
- What does this mean?
 - We reject H_0 : no interaction

- Is the Interaction significant?
- What does this mean?
 - We reject H_0 : no interaction
 - Conclusion: each variable has an effect, but the nature of that effect changes according to the category of the other variable

- Is the Interaction significant?
- What does this mean?
 - We reject H_0 : no interaction
 - Conclusion: each variable has an effect, but the nature of that effect changes according to the category of the other variable
 - A comparison of means would be sensible here

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Example			

2

Э

メロト メタト メヨト メ

Dr. Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

Outline	Assessment	One-Way ANOVA	Two-Way ANOVA
Your Tur			

 Look at your independent variables and perform an ANOVA with income for different pairs of them

Your Turn!

- Look at your independent variables and perform an ANOVA with income for different pairs of them
- Interpret the results of each table, and consider the implications for your research project

Your Turn!

- Look at your independent variables and perform an ANOVA with income for different pairs of them
- Interpret the results of each table, and consider the implications for your research project
- Be ready to present some results for the seminar group.