Regression with Categorical Variables

QS101: Introduction to Quantitative Methods in Social Science

Week 19: Multivariate Regression and Regression with Categorical Variables

Dr. Florian Reiche Teaching Fellow in Quantitative Methods Course Director BA Politics and Sociology Deputy Director of Student Experience and Progression

March 5th, 2015

Dr. Florian Reiche

Your Regression Models I

Regression with Categorical Variables

Dichotomous Categorical Variables Regression with a 1/2/3 Variable

Your Regression Models II

・ロ・・個・・用・・用・ うらぐ

Dr. Florian Reiche

Outline	Your Regression Models I	Regression with Categorical Variables 0000 0000000000	Your Regression Models II

Your Regression Models I

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Your Regression Models I	Regression with Categorical Variables	Your Regression Models II
Task			

 Select two of the continuous variables from last week's handout

э.

(日) (四) (日) (日) (日)

Outline	Your Regression Models I	Regression with Categorical Variables	Your Regression Models II
Task			

- Select two of the continuous variables from last week's handout
- Run a multiple regression by typing
 - regress c_fimngrs_dv indepvar1 indepvar2

Outline	Your Regression Models I	Regression with Categorical Variables	Your Regression Models II
Task			

- Select two of the continuous variables from last week's handout
- Run a multiple regression by typing
 - regress c_fimngrs_dv indepvar1 indepvar2
- Interpret the results:
 - What does the constant mean?
 - What does each slope coefficient indicate?
 - Are your results significant at the 95% level, and what does this mean?

Outline	Your Regression Models I	Regression with Categorical Variables	Your Regression Models II

Regression with Categorical Variables

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science Dichotomous Categorical Variables

Regression with Categorical Variables

Dichotomous Categorical Variables

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science ▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の��

 You can enter a dichotomous categorical variable just like you would with a continuous one

Source of this section: http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm

- You can enter a dichotomous categorical variable just like you would with a continuous one
- Ensure, that the coding is 0/1, as the interpretation is easier

Source of this section: http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm

- You can enter a dichotomous categorical variable just like you would with a continuous one
- Ensure, that the coding is 0/1, as the interpretation is easier
- ▶ If necessary, recode, for example: recode c_sex 1=0 2=1

Source of this section: http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm

- You can enter a dichotomous categorical variable just like you would with a continuous one
- ▶ Ensure, that the coding is 0/1, as the interpretation is easier
- ▶ If necessary, recode, for example: recode c_sex 1=0 2=1
- Run the regression: regress c_fimngrs_dv c_sex

Source of this section: http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm

The Setup

- You can enter a dichotomous categorical variable just like you would with a continuous one
- ▶ Ensure, that the coding is 0/1, as the interpretation is easier
- If necessary, recode, for example: recode c_sex 1=0 2=1
- Run the regression: regress c_fimngrs_dv c_sex
- The interpretation of the output is straightforward

 ${\tt Source of this section: http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter3/statareg3.htm}$

Dichotomous Categorical Variables

The Output

. regress c_fimngrs_dv c_sex

Source	SS	df	MS		Number of obs F(1, 49737)	= 49739 = 2033.18
Model Residual	5.7436e+09 1.4050e+11	1 5.7 49737 282	436e+09 4917.28		Prob > F R-squared	= 0.0000 = 0.0393
Total	1.4625e+11	49738 29	40336.8		Root MSE	= 1680.7
c_fimngrs_dv	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
c_sex _cons	-682.0223 2743.874	15.12554 24.50872	-45.09 111.96	0.000	-711.6686 2695.837	-652.3761 2791.912

Figure: Regression on the Influence of Gender on Monthly Income

Dr. Florian Reiche

Outline	Your Regression Models I	Regression with Categorical Variables 000● 00000000000	Your Regression Models II
Dichotomo	us Categorical Variables		
Interp	pretation		

(ロ) (四) (三) (三)

2

Remember the coding: Male=0, Female=1

Outline	Your Regression Models I	Regression with Categorical Variables 000● 00000000000	Your Regression Models II
Dichotomo	us Categorical Variables		
Interp	pretation		

- Remember the coding: Male=0, Female=1
- Now build the estimated regression equation

Outline	Your Regression Models I	Regression with Categorical Variables 000● 00000000000	Your Regression Models II
Dichotomo	us Categorical Variables		
Interr	pretation		

- Remember the coding: Male=0, Female=1
- Now build the estimated regression equation
- ▶ Male: 2743.87 682.02 × 0 = 2743.87

Outline	Your Regression Models I	Regression with Categorical Variables 000● 00000000000	Your Regression Models II
Dichotomous	Categorical Variables		

Interpretation

- Remember the coding: Male=0, Female=1
- Now build the estimated regression equation
- ▶ Male: 2743.87 682.02 × 0 = 2743.87
- ► Female: 2743.87 682.02 × 1 = 2061.85

Outline	Your Regression Models I	Regression with Categorical Variables 000● 00000000000	Your Regression Models II
Dichotomous	Categorical Variables		

Interpretation

- Remember the coding: Male=0, Female=1
- Now build the estimated regression equation
- ▶ Male: 2743.87 682.02 × 0 = 2743.87
- ► Female: 2743.87 682.02 × 1 = 2061.85
- The coefficient therefore tells you how much more or less the category coded as "1" would earn.

Regression with a 1/2/3 Variable

Regression with Categorical Variables

Regression with a 1/2/3 Variable

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ の々で

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○●○○○○○○○○○	Your Regression Models II			
Regression w	Regression with a 1/2/3 Variable					
The Se	etup					

If we have a predictor with three (or more) categories, we need to transform these

2

≣ ▶

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○●○○○○○○○○○	Your Regression Models II
Regression w	ith a 1/2/3 Variable		
The Se	etup		

If we have a predictor with three (or more) categories, we need to transform these

< 🗆 > < 🗗

2

For example: new variable c_rel

Outline	Your Regression Models I	Regression with Categorical Variables ○○○ ○●○○○○○○○○	Your Regression Models II
Regression	with a $1/2/3$ Variable		
The S	Setup		

- If we have a predictor with three (or more) categories, we need to transform these
- For example: new variable c_rel
- Captures 3 religious categories: Christian (1), Muslim (2), and Other (3) (source: variable c_oprlg1)

Outline	Your Regression Models I	Regression with Categorical Variables ○○○ ○●○○○○○○○○	Your Regression Models II
Regression	with a $1/2/3$ Variable		
The S	Setup		

- If we have a predictor with three (or more) categories, we need to transform these
- For example: new variable c_rel
- Captures 3 religious categories: Christian (1), Muslim (2), and Other (3) (source: variable c_oprlg1)
- We need to create dummy variables from c_rel:

Regression with Categorical Variables

Your Regression Models II

Regression with a 1/2/3 Variable

Creating Dummy Variables

Old Variable	New Variables			
c_rel	c_rel1	c_rel2	c_rel3	
1	1	0	0	
1	1	0	0	
1	1	0	0	
2	0	1	0	
2	0	1	0	
2	0	1	0	
3	0	0	1	
3	0	0	1	
3	0	0	1	

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @ ♪

Dr. Florian Reiche

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○●○○○○○○○	Your Regression Models II
Regression wi	th a 1/2/3 Variable		

Generate the Dummies

The command is: tabulate oldvar, gen(oldvar)

イロト イヨト イヨト イ

2

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○●○○○○○○○	Your Regre
Regression	with a $1/2/3$ Variable		

Generate the Dummies

- The command is: tabulate oldvar, gen(oldvar)
- For example: tabulate c_rel, gen(c_rel)

ssion Models II

Outline Your Regression Models I Regression Works I Regression with a 1/2/3 Variable

Regression with Categorical Variables

Your Regression Models II

Regression with a 1/2/5 variable

Generate the Dummies

- The command is: tabulate oldvar, gen(oldvar)
- For example: tabulate c_rel, gen(c_rel)
- You can check the coding for the first ten cases by typing: list c_rel c_rel1 c_rel2 c_rel3 in 1/10, nolabel

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○●○○○○○○	Your Regression Models II
Regression	with a $1/2/3$ Variable		

Running the Regression

 You include all but one of these dummies in your regression analysis

3

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○●○○○○○○	Your Regression Mode
Regression	with a $1/2/3$ Variable		

Running the Regression

- You include all but one of these dummies in your regression analysis
- This is your reference category

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○●○○○○○○	Your Regr
Regression	with a $1/2/3$ Variable		

Running the Regression

- You include all but one of these dummies in your regression analysis
- ► This is your *reference category*
- For example: regress c_fimngrs_dv c_rel2
 c_rel3

ession Models II

The Output

. regress c_fimngrs_dv c_rel2 c_rel3

Source	SS	df	MS		Number of obs	=	430
Model Residual Total	14337589.8 518291115 532628704	2 7 427 12 429 12	7168794.9 213796.52 241558.75		Prob > F R-squared Adj R-squared Root MSE	= = =	0.0030 0.0269 0.0224 1101.7
c_fimngrs_dv	Coef.	Std. Er	r. t	P> t	[95% Conf.	Int	terval]
c_rel2 c_rel3 _cons	-384.9522 -56.5929 975.1469	121.9882 160.4413 97.76223	2 -3.16 3 -0.35 3 9.97	0.002 0.724 0.000	-624.7243 -371.9459 782.9918	-14 25 13	45.1801 58.7601 167.302

Figure: Regression on the Influence of Religion on Monthly Income

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○●○○○○	Your Regression Models II
Regression	with a $1/2/3$ Variable		
Interp	retation		

Here, c_rell is omitted, so _cons shows the mean for a Christian person

æ

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○●○○○○	Your Regression Models II
Regression	with a $1/2/3$ Variable		
1			

Interpretation

- Here, c_rel1 is omitted, so _cons shows the mean for a Christian person
- The other coefficients tell you how much more, or less a Muslim or a person with the religion "other" earns, *relative* to a Christian person

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○●○○○○	Your Regression Models II
Regression wit	h a 1/2/3 Variable		

Interpretation

- Here, c_rell is omitted, so _cons shows the mean for a Christian person
- The other coefficients tell you how much more, or less a Muslim or a person with the religion "other" earns, *relative* to a Christian person
- Last step, test that the differences between the three groups are significant, by typing: test c_rel2 c_rel3

▲□► < □► </p>

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○○●○○○	Your Regression Models II
Regression wit	h a 1/2/3 Variable		

. test c_rel2 c_rel3
(1) c_rel2 = 0
(2) c_rel3 = 0
F(2, 427) = 5.91
Prob > F = 0.0030

Figure: Test for Significant Differences of Income between Religious Groups

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○○○●○○	Your Regression Models II
Regression	with a $1/2/3$ Variable		

 We can save ourselves the faffing with generating the dummies by using the xi command

(日) (四) (日) (日) (日)

2

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○○○●○○	Your Regression Models II
Regression w	ith a 1/2/3 Variable		

- We can save ourselves the faffing with generating the dummies by using the xi command
- For example: xi: regress c_fimngrs_dv i.c_rel

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○○○●○○	Your Regression Models II
Regression v	with a $1/2/3$ Variable		

- We can save ourselves the faffing with generating the dummies by using the xi command
- For example: xi: regress c_fimngrs_dv i.c_rel
- STATA automatically leaves the first category (here: Christian) out

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○○○●○○	Your Regression Models II
Regression wi	th a 1/2/3 Variable		

- We can save ourselves the faffing with generating the dummies by using the xi command
- For example: xi: regress c_fimngrs_dv i.c_rel
- STATA automatically leaves the first category (here: Christian) out
- If you want to omit a different category as your reference, you can tell STATA before running the regression: char
 c_rel[omit] 3

The Output

. xi: regress i.c_rel	<pre>c_fimngrs_dv _Ic_rel_1</pre>	i.c_re -3	ι	(natural	ly coded	; _Ic_rel_1 om:	itt	ed)
Source	SS	df		MS		Number of obs F(2, 427)	=	430
Model Residual	14337589.8 518291115	2 427	716 1213	8794.9 796.52		Prob > F R-squared	=	0.0030
Total	532628704	429	1241	558.75		Root MSE	=	0.0224
c_fimngrs_dv	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
_Ic_rel_2 _Ic_rel_3 _cons	-384.9522 -56.5929 975.1469	121.9 160.4 97.76	882 413 223	-3.16 -0.35 9.97	0.002 0.724 0.000	-624.7243 -371.9459 782.9918	-1 2 1	45.1801 58.7601 167.302

Figure: Regression on the Influence of Religion on Monthly Income

Dr. Florian Reiche

QS101: Introduction to Quantitative Methods in Social Science

Outline	Your Regression Models I	Regression with Categorical Variables ○○○○ ○○○○○○○○○●	Your Regression Models II
Regression	with a $1/2/3$ Variable		

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

Dr. Florian Reiche

Outline	Your Regression Models I	Regression with Categorical Variables 0000 0000000000	Your Regression Models II

Your Regression Models II

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Your Regression Models I	Regression with Categorical Variables	Your Regression Models II
Task			

2

A D > A B > A B

Run a regression with a categorical variable

Dr. Florian Reiche QS101: Introduction to Quantitative Methods in Social Science

Outline	Your Regression Models I	Regression with Categorical Variables 0000 0000000000	Your Regression Models II
Tasl	K		

- Run a regression with a categorical variable
- Recode the categorical variable as necessary before carrying out the regress command

Outline	Your Regression Models I	Regression with Categorical Variables 0000 0000000000	Your Regression Models II
Task			

- Run a regression with a categorical variable
- Recode the categorical variable as necessary before carrying out the regress command
- Interpret the results:
 - What does the constant mean?
 - What does the slope coefficient indicate?
 - Are your results significant at the 95% level, and what does this mean?