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Abstract—Nucleus segmentation and classification are the
prerequisites in the workflow of digital pathology processing.
However, it is very challenging due to its high-level heterogeneity
and wide variations. This work proposes a deep neural network
to simultaneously achieve nuclear classification and segmentation,
which is designed using a unified framework with three different
branches, including segmentation, HoVer mapping, and classifi-
cation. The segmentation branch aims to generate the boundaries
of each nucleus. The HoVer branch calculates the horizontal and
vertical distances of nuclear pixels to their centres of mass. The
nuclear classification branch is used to distinguish the class of
pixels inside the nucleus obtained from segmentation.

Index Terms—Segmentation, Classification, Histopathology,
Nuclei

I. METHODS

We propose a unified model to achieve the simultaneous
nuclear instance segmentation and classification on histopatho-
logical images, which is illustrated in Fig. 1. Benefiting
from the design of HoVer-Net, we employ a three-branch
structure for simultaneous nuclear segmentation, HoVer map
production, and pixel-level nuclear classification. The segmen-
tation branch aims to depict the boundary of each nucleus.
The HoVer branch generates horizontal and vertical maps by
calculating horizontal and vertical distances of nuclear pixels
to their centres of mass, which is used in post-processing to
achieve precise nuclear segmentation. The nuclear classifica-
tion branch divides the nucleus into six categories: epithelial,
lymphocyte, plasma, eosinophil, neutrophil, or connective tis-
sue.

The three branches have shared encoder and decoder but
different heads. Our network follows the general encoder-
decoder architecture of the popular U-Net model [1]. But
we replace the convolution blocks in the encoder part of
the original U-Net with a more elaborate SE-Res module
originally proposed in [2]. The SE-Res module employs a
gating mechanism with the sigmoid activation to capture
channel-wise feature dependencies, which helps to enhance
more informative features and suppress less useful ones. In
the decoder part of the network, we embed the CA module
[3] at each resolution level in order to capture cross-channel,

direction-aware, and position-sensitive information. The skip
connections of the original U-Net are kept between the encoder
and decoder blocks, which helps aggregate features of inter-
channel relationships and precise positional information at the
decoder to get more accurate segmentation results.

The prediction heads in the three branches have simi-
lar structures but different weights, which are composed of
convolution, batch normalization (BN), and ReLU. The loss
functions adopt the Dice + cross-entropy (CE) and mean
squared error (MSE) in the segmentation branch and HoVer
branches, respectively. Considering the class imbalance of
different types of nuclei, the loss function of the classification
branch employs the Dice and weight CE. These loss functions
are defined as follows.

Lseg = LCE + LDice (1)

LHoVer = LMSE(y, ŷ) = ‖ŷ − y‖22 (2)

Lcls = LWCE + LDice (3)
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i yi,kŷi,k + ε∑

i yi,k +
∑
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where y and ŷ represent the ground truth label and the
predicted label, respectively. The wk denotes the class weights,
which are set empirically to 2, 2, 3, 4, 4, 2, and 1 for the
epithelial, lymphocyte, plasma, eosinophil, neutrophil, connec-
tive tissue, and background classes, respectively. When the wk

equals 1, the LWCE becomes the traditional LCE.
After the network training, our post-processing follows

the method used by HoVer-Net [4], which helps drive more
accurate classification and segmentation results.



Fig. 1. Pipeline of our proposed nuclear instance segmentation and classification algorithm.

II. RESULTS

A. Experimental setups

Standard real-time data augmentation methods such as hor-
izontal flipping, vertical flipping, random rescaling, random
cropping, and random rotation are performed to make the
model invariant to geometric perturbations. Moreover, Ran-
domHSV is also adopted to randomly change the hue, satura-
tion, and value of images in the hue saturation value (HSV)
color space, making the model robust to color perturbations.
The Adam optimizer [5] is used as the optimization method
for model training. The initial learning rate is set to 0.0003,
and reduced by a factor of 10 at the 25th and the 35th epoch,
with a total of 50 training epochs. The min-batch size is set as
32. All models are implemented using the PyTorch framework
and all experiments are performed on a workstation equipped
with an Intel(R) Xeon(R) E5-2680 v4 2.40GHz CPU and four
32 GB memory NVIDIA Tesla V100 GPU cards.

B. Experimental results

Two evaluation metrics are used for algorithm validation,
including multi-class panoptic quality (mPQ+) and multi-
class coefficient of determination (R2), which keep the same
with the organizer of the challenge [6]. Table I shows our
results by comparing them with other methods.

TABLE I
COMPARISON BETWEEN OUR RESULTS AND OTHER METHODS

Methods mPQ+ R2

HoVer-Net (baseline) 0.29558 -0.42802
MaskRCNN 0.35460 -0.19821
Ours 0.43419 0.56484

As shown in Table I, it is seen that our method outperforms
previous HoVer-Net and MaskRCNN by about 0.14 and 0.8 in

terms of mPQ+ metric. The results demonstrate the effective-
ness of our proposed nuclear classification and segmentation
algorithm.
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