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Nuclei instance segmentation within histology images
enables the extraction of interpretable cell-based features that
can be used in downstream explainable models in compu-
tational pathology (CPath). However, this task faced with
two major challenges. One lies in the overlapping/clustered
nuclei, while the other one lies in the varying size and shape
of different structures in histology images. To address these
challenges, we propose a distance-based instance segmenta-
tion model with boundary refinement unit for nuclei segmen-
tation. Firstly, distance images are utilised to help model to
recognize the boundary of each neclei, which are constructed
from instance masks and records the distances of neclei pix-
els to their centres of mass in different directions. Secondly,
we further employ a boundary refinement unit to refine each
segmented instance, where different size of nuclei are pro-
cessed under the same scale. Five-fold cross validation on
CoNIC2022 challenge dataset is used to evaluate the method.
Overall,the binary panoptic quality (PQ) is 0.69 and the
multi-class panoptic quality (mPQ+) of six types of nuclei is
0.58. Experimental results demonstrate propose method can
achieve robust nuclei instance segmentation within histology
images, particularly in areas with clustered instances.

1. INTRODUCTION

Nuclei segmentation is a crucial task in computational pathol-
ogy (CPath), as it provides rich spatial and morphometric in-
formation regarding nuclei. However, automatic nuclei seg-
mentation remains challenging. Firstly, nuclei are usually
clustered together. Secondly, the size, shape of different nu-
cleus varying greatly.

The key to seperate clustered nuclei is detecting the
boundary of each nucleus. One popular scheme is to segment
the contours first and then subtract contours from predicted
foreground to obtain final segmentation. In order to segment
contour accurately, chen et al [1] adopted two independent
decoders for U-Net [7], one for foreground segmentation and
another for contour segmentation. Since there is no inter-
action between these two decoders, inconsistency may exist
between segmented foreground and segmented contour. In
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Fig. 1. Examples of clustered nuclei and their distance repre-
sentations. Distance images with directions of { 0◦, 45◦, 90◦,
135◦} are displayed in the figure, where pixel values outside
region of interest are set to 0 for better visualization.

order to make use of the correlation between two decoders,
BES-Net[2] , CIA-Net [3], BRP-Net [4] further introduced
uni-directional and bi-directional information transmission,
respectively, which means one decoder obtains extra features
from the other one. Another popular scheme is to employ
distance modeling with morphological post-processing to
separate clustered nuclei. Hover-Net [5] employ horizontal
and vertical distance representation for cluster object sepa-
ration, which achieved state-of-the-art results on multi-type
nuclei segmentation and classification tasks.

In this paper, we propose a novel solution for nuclei
segmentation, which is an effective extension of Hover-Net
[5]. This solution comprises two stages: one stage to ob-
tain instance proposals and another stage to refine the seg-
mented boundary. In the first stage, we implement the multi-
directional distance images to separate clustered nuclei. In
the second stage, a boundary refinement unit is employed to
obtain more accurate boundary for each segmented instance.
Besides, a generic U-Net [7] with densenet-121 [6] as back-
bone is employed to further classify each segmented instance.
We conducted experiments on CoNIC 2022 challenge dataset
[8, 9], from which we can conclude that proposed approach
significantly improve the nuclei segmentation accuracy.



Fig. 2. Schematic diagram of the proposed framework for instance proposal generation.

2. METHODS

Similar to BRP-Net [4], our method for nuclei instance seg-
mentation consists of two parts, one for obtaining instance
proposals and another for instance-wise boundary refinement.

2.1. Instance Proposal Generation

Our scheme for obtaining high quality instance proposals is
to predict distance information of nuclear pixels and then em-
ploy a tailored post-processing pipeline to segment nuclear
instances. Extant approach Hover-Net[5] have integrated hor-
izontal and vertical distance images into instance segmenta-
tion, however, as shown in Fig1, as nuclei may cluster in dif-
ferent directions, this approach may not have sufficient ca-
pacity to recognize the spatial relations between clustered in-
stances. Accordingly, we extend Hover-Net’ distance images
from 2 directions to 8 directions(0◦, 45◦, 90◦, 135◦, 180◦,
225◦, 270◦, 315◦).The distance images record the distances
of nuclei pixels to their centres of mass in different directions.

2.1.1. Model Architecture

The model architecture is a variant of U-Net [7] with DenseNet-
121 [6] as backbone.The input to the model is the histology
image in RGB format, and the model outputs are the predicted
foreground and eight predicted distance images. Compared
to the standard DenseNet implementation, we reduce the total

down-sampling factor from 32 to 8 by using a stride of 1 in
the first convolution and removing the subsequent pooling
operation. The number of dense units within each stage is 6,
12, 24, and 16 that are applied at down-sampling levels 1, 2,
4 and 8 respectively. The up-sampling path is employed to
gradually recover the resolution of feature images and gener-
ates a high-resolution prediction. The decoder block mainly
consists of repeating up-sampling layers, skip concatena-
tions, 3×3 convolution layers, batchnormalization(BN)[10]
layers, and ReLUs. In order to obtain richer details, the en-
coder layers with {1, 1/2, 1/4} of the original image size
are passed to the decoder block by skip concatenations since
earlier high-resolution feature images from encoder can help
to refine the information of locations.We adopted bilinear
scaling followed by 3×3 convolution layers to up-sample the
features images. Based on the decoder module, feature im-
ages are gradually up-sampled to the original resolution, and
the predicted distance images and predicted foreground are
generated after 1×1 convolution layers. We set the number
of channels in decoder to 64 based on experiments.

2.1.2. Post-processing pipeline

As show in Fig. 2, the post-processing pipeline is utilized to
transform predicted distance images and foreground proba-
bility into instance masks. We follow the similar rules out-
lined in HoverNet. Firstly, pixels with foreground probabili-
ties larger than σ will be considered to be foreground pixels.



Fig. 3. Schematic diagram of the proposed boundary refine-
ment unit.

We select a very small threshold σ=0.25 since boundary re-
finement unit in the next stage has some abilities to remove
false positives generated from this stage. Then, 8 gradient
images are firstly calculated from 8 distance images indepen-
dently using different sobel kernels and then normalized to
(0, 1) and merged into an overall gradient image. This opera-
tion could be very fast with GPU implementation. As we can
see, pixels with high gradient values intend to be the center
area pixels of nuclei. Therefore, we compute markers using a
threshold function that acts on overall gradient image and sets
values above 0.5 to 1 or 0 otherwise. With the markers, gra-
dient image and predicted mask, the final predicted instance
mask are generated after marker-controlled watershed algo-
rithm.

2.2. Boundary refinement unit

As shown in Fig. 3, in order to handle the varying size of
nuclei, the boundary refinement unit precesses segmented
instances using the same sacle. We crop one square 48 ×
48 patch containing each segmented instance. If an instance
larger than 48, it will be resized to 48 × 48. Inputs to the
model include the patch image, and the probability map that
predicted by previous stage. To relieve the influence of back-
ground, elements in the probability map that fall outside of
the dilated proposal are set to zero., we use a tiny 4-stage
U-Net model for this unit. The number of model channels
are 64, 128, 256, 512 respectively for each stage. To capture
more contextual feature, a classification branch that classify
nuclei into 7 types is employed for deep supervision. This
branch simply consists of a single fully connected layer and
will be removed during testing.

2.3. Nuclei classification

We simply use the same DenseNet121-U-Net for neclei clas-
sification. The input to the model is the histology image in
RGB format, and the model outputs is 7-class predicted prob-
ability map. There is no special design for classification task.

Fig. 4. Schematic diagram of the learning rate schedule.Red
circles indicate where we employ the weight averaging.

3. EXPERIMENTS

We conduct five-fold cross validation on CoNIC 2020 chanl-
lenge dataset [8, 9], which consists of 431,913 instances of six
type nuclei. Models are trained using original histology im-
ages and validated using challenge patches in order to fairly
compared with other methods. We strictly split the challenge
patches at the patient level to make sure there is no data-
leakage.

Binary panoptic quality(PQ) and multi-class PQ (mPQ+)
described in [9] are employed as the evaluation metrics.Source
code for evaluation could be found in 1.

3.1. Implementation Details

For instance proposals generation and classification, we em-
ployed similar loss functions as Hover-Net, which consists of
CE loss, Dice loss and L1 loss. Weight of the L1 loss is set
to 2. Models are trained using 128x128 randomly cropped
images with batch size of 26 and tested using 256x256 im-
ages with batch size of 8. For boundary refinement, we use
Dice loss and CE loss for optimization. Models are trained
and tested using 48x48 patches with batch size of 128.

During training, data augmentation including flip, scaling,
rotation, color jitter, motion blur, median blur, gaussian blur,
gaussian noise was applied to all methods. During testing, flip
and rotation are applied to instance proposal generation and
classification model.

As shown in Fig. 4, SGD with 4-circle stochastic weights
averaging (SWA) [11] were used to train all the models. The

1https://github.com/TissueImageAnalytics/CoNIC



Table 1. Ablation study results on a single fold. ”BL” denotes the baseline, ”MD” denotes the multi-directional distance image,
”BR” denotes the boundary refinement unit, ”SWA” denotes the stochastic weights averaging, ”TTA” denotes the test-time-
augmentation

Methods Multi-PQ+ Binary PQNeutrophil Epithelial Lymphocyte Plasma Eosinophil Connective Mean
BL 0.319 0.621 0.725 0.578 0.395 0.637 0.546 0.663
BL+MD 0.321 0.631 0.730 0.582 0.398 0.641 0.551 0.673
BL+MD+BR 0.308 0.657 0.753 0.599 0.403 0.658 0.563 0.700
BL+MD+BR+SWA 0.337 0.663 0.756 0.604 0.420 0.663 0.574 0.704
BL+MD+BR+SWA+TTA 0.351 0.665 0.759 0.605 0.417 0.670 0.578 0.706

Table 2. Quantitative results of 5-fold cross validation

Methods Multi-PQ+ Binary PQNeutrophil Epithelial Lymphocyte Plasma Eosinophil Connective Mean
Fold 0 0.351 0.665 0.759 0.605 0.417 0.670 0.578 0.706
Fold 1 0.472 0.662 0.736 0.602 0.466 0.652 0.598 0.688
Fold 2 0.315 0.646 0.770 0.579 0.418 0.662 0.565 0.678
Fold 3 0.331 0.673 0.733 0.594 0.437 0.668 0.573 0.700
Fold 4 0.366 0.661 0.733 0.595 0.489 0.673 0.586 0.695
Mean 0.367 0.661 0.746 0.594 0.445 0.664 0.580 0.693

basic learning rate is 0.01 and adapted following 2k warm-
up and 120k cosine annealing scheduler. The optimization
procedure is stopped at 122k iterations. All models are im-
plemented using a single 3090 GPU with 24 GB memory.It
takes around 25 hours to train the entire framework.

3.2. Ablation Study

In order to evaluate the effect of each component proposed
in this paper, we conducted ablation studies on fold 0. The
baseline is the instance proposal generation model that pre-
dicts foreground, horizontal and vertical distance images like
Hover-Net. The results are exhibited in Tab. 1. As we can
see that utilizing the multi-directional distance image and the
boundary refinement unit improve the segmentation accuracy
greatly. Further combining the SWA, test-time augmentation
can slightly boost the performance.

3.3. Quantitative results of 5-fold cross validation

The provided results analysis is based on the 5-fold cross val-
idation results on the training set. Tab. 2 illustrates the results
of 5-fold cross validation. While high PQ and mPQ+ scores
are obtained for epithelial, lymphocyte, plasma and connec-
tive, PQ and mPQ+ scores for neutrophil and eosinophil in-
dicate unsatisfactory performance. As we can notice that the
PQ is much better than mPQ+. As shown in Fig. 5,proposed
method can obtain accurate instance segmentation results
even on clustered area, which means the limitation of the
framework may lies in the classification model.

Fig. 5. Visualization results.From left to right are input RGB
images, our predictions and ground truth(GT).

4. CONCLUSION

This paper presents a novel framework for nuclei segmenta-
tion with clustered instances. To accurately split clustered nu-
cleis, we introduced multi-directional distance representation
into nuclei proposal generation. To further boost the perfor-
mance of nuclei segmentation, boundary refinement unit is
designed to learn contextual features in the same scale. Ex-
perimental results demonstrate the proposed method can work
well on nuclei segmentation and classfication. As such, it
shows highly potential clinical values in CPATH.
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