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Abstract—This manuscript describes the panoptic segmen-
tation method we devised for our submission to the CONIC
challenge at ISBI 2022. Key features of our method are a weighted
loss that we specifically engineered for semantic segmentation
of highly imbalanced cell types, and an existing state-of-the
art nuclei instance segmentation model, which we combine in
a Hovernet-like architecture.

Index Terms—nuclei segmentation, cell classification, digital
pathology, challenge submission

I. INTRODUCTION

The Colon Nuclei Identification and Counting (CoNIC)
Challenge 2022 dataset of H&E stained whole-slide images
comes with drastic semantic class imbalance: Among the six
cell types described in [1], neutrophils and eosinophils each
make up less than 1% of the cells in the dataset. Furthermore,
nucleus size varies considerably across cell types, while at the
same time some cell types, though frequent, also exhibit high
intra-class variation in shape. To simultaneously handle the
imbalances that stem from (1) cell types that rarely appear at
all in an image, as well as (2) cell types that are small and
thus occupy relatively few pixels in an image, we adopt ideas
for importance sampling and loss weighting from the recent
work of [3]. We complement these ideas with a state-of-the-art
nuclei instance segmentation model adapted from [5].

II. METHODOLOGY

The CoNIC: Colon Nuclei Identification and Counting
Challenge consists of two different tasks: Task 1: Nuclear
segmentation and classification and Task 2: Prediction of
cellular composition. We make some task specific adjustments,
but keep the overall architecture the same.

A. Importance sampling

To treat image-level class imbalance, i.e., to cope with the
fact that some classes rarely appear in an image at all, we
adapt the training image sampling method presented in [3]: We
sample training images such that the class distribution in the
sampled training data is uniform. To this end, we determine
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the probability for a pixel in training image n to belong to
class c as
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1
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∑
h,w

mc,n,h,w (1)

where mc,n,i,j ∈ {0, 1} denotes the semantic mask of class c
for training image n at pixel index (h,w). We then calculate
the probability for a training image to be drawn as
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1

|c|
∑
c
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m Xc,m

(2)

This has the effect that training images that do contain rare
classes are preferably sampled. In each epoch, we sample with
replacement a new subset from the training data using the
sampling probabilities pn.

B. Weighted focal loss for semantic segmentation

To cope with pixel-level class imbalance, i.e., the fact that
some classes occupy fewer pixel per image than others, we
adapt the focal loss from [3]. Based on the training labels we
calculate an exponential moving average class prior

Xt+1
c = γXt

c + (1− γ)Xc,n. (3)

The loss is then calculated as weighted cross-entropy, with
class weights wc = (1−Xt+1

c )ρ, with hyperparameter ρ = 3
and label smoothing [4] parameter set to 0.05.

C. Three-label model and auxiliary center-point vector regres-
sion for instance segmentation

We employ a three-label model (nucleus interior, nucleus
boundary and background) for instance segmentation [10].
During training, we additionally regress nucleus center point
vectors as auxiliary task, as described in [5]. These vectors
are not used at test time. As training loss we employ the sum
of the cross-entropy (classification) loss and the L2 (vector
regression) loss, as in [5].



D. Hovernet-like model architecture

The first 5 levels of an imagenet pre-trained EfficientNet B7
encoder [6] (or alternatively an EfficientNet-L2 encoder [13])
with two U-Net [7] decoders with 20% dropout per layer are
used. One of the decoders is optimized for the semantic loss
whereas the other is optimized for both instance segmentation
losses.

E. Training recipe

We shuffle the dataset and split it into 4481 training
tiles and 500 validation tiles. For color augmentation during
training, we apply color deconvolution to the RGB image
to obtain an HED instensity image [9]. The image is then
augmented by randomly adjusting each channels contrast and
transformed back to RGB. In addition, we apply RGB Color
Jitter. Furthermore, gaussian blur and slight gaussian noise
is applied. Spatial augmentations include random mirroring,
translations, scaling, zooming, rotations, shearing and elastic
transformations. We use AdamW optimizer [12] with 1e − 4
weight decay and cosine annealing learning rate scheduler.
Models are trained for 600k training steps with batch size 4
and the model with the highest mPQ+ on the validation set
is picked as the best checkpoint.

F. Test-time augmentations and inference

During inference we apply random HED color augmentation
and change staining intensities by 10% and apply random flips
and 90◦ rotations. Furthermore we use dropout during test-
time [8]. We thus obtain predictions from 16 forward passes,
8 per model in the ensemble for Task 1, and obtain our final
prediction by pixel-wise averaging.

G. Post-processing

For each task, we draw per-class seeds from the predicted
nucleus interior class and use watershed to delineate instances
as described in [5]. Foreground and seed thresholds for water-
shed are optimized on our validation set. To split distant false
merges in the predictions, we apply the connected-components
algorithm on each individual instance mask. Then, we remove
small as well as large instances again with class specific
thresholds and filter out instance masks where the instance
solidity is below a cell type specific threshold. We fill any
holes in each instance mask. Parameters are optimized by
hyperparamter search on the validation set. For each instance
mask we assign the cell type that maximizes the sum of the
cell type’s softmax scores over all pixels.

H. Results

We evaluated two different models on the preliminary test
set. Models differ only in their encoder architecture. The
larger EfficientNet B7 considerably improved performance
compared to the EfficientNet B5 model that we used for
method development.

We submit two different versions per tasks for the final test
set. For Task 1, we use an ensemble model consisting of one
U-Net with EfficientNet-L2 backbone, and one U-Net with

Model mPQ+ PQ R2
EfficientNet B5 0.45684 0.62954 0.68697
EfficientNet B7 0.48471 0.64458 0.75432

TABLE I
PRELIMINARY TEST SET RESULTS FOR TWO MODEL CONFIGURATIONS

EfficientNet-B7 backbone and treat the results the same as
TTAs from one model. For Task 2, we use only the U-Net
with EfficientNet-B7 backbone and transform the output by
center cropping the masks to 224×224 and count the number
of instances per class.
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