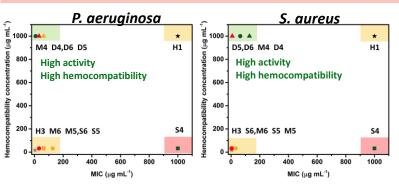
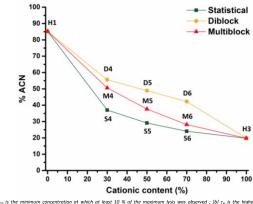

Structure-Activity Relationship of Synthetic Antimicrobial Peptide Mimics WARWICK (SAMPs) obtained by RAFT

Agnès Kuroki^a, Parveen Sangwan^b, Yue Qu^c, Agnieszka Bialek^a, Raoul Peltier^a, Carlos Sanchez-Cano^a, Katherine Locock^{b,d}, Elizabeth G. L. Williams^b, Matthias Hartlieb^a, Sébastien Perrier^{a,e}

INTRODUCTION Recent work focuses on the role of antimicrobial peptides¹ (AMPs) as a solution to the development of resistance against antibiotics, as AMPs target bacterial membrane, thus resistance against these systems cannot be easily developed. Polymeric materials have predominantly appeared as the ideal candidates because their properties can be tuned easily and can be much cheaper to produce on industrial scale than peptides^{2,3}. The present works focuses on the effect of the segmentation of the sequence of well-defined SAMPs synthesized with RAFT polymerization⁴ on their antimicrobial activity and the hemocompatibility.

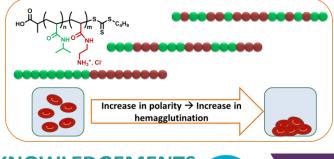

RATIONAL DESIGN OF SAMPS OF VARIOUS SEGMENTATION



HO HO H_{1} H_{1} H_{2} H_{1} H_{2} H_{1} H_{2} H_{1} H_{1} H_{1} H_{2} H_{1} H_{1} H_{2} H_{1}										
Homopolyme	ک ^ہ ۲	0 % cationic	100 % cationic							
	30 % cationic	50 % cationic	70 % cationic							
Multiblock 🗨 Diblock 🛛 🗨	M1/M4	M2/M5	••••••••••••••••••••••••••••••••••••••							

EFFECT OF SEGMENTATION ON THE POLARITY AND THE **BIOLOGICAL PROPERTIES OF THE SAMPs** 100

Sample name	НС ₁₀ ^[а] (µg/mL)	с _н ^[b] (µg/mL)	MIC ^[c] (µg/mL)			Selectivity ^[d]				
			E. Coli	P. Aeruginosa	S. Aureus	S. Epidermidis	E. Coli	P. Aeruginosa	S. Aureus	S. Epidermidis
H1	>1000	>1000	>1000	>1000	>1000	>1000	>1	>1	>1	>1
Н3	512	16	4	4	4	32	4.00	4	4	0.5
S4	>1000	32	>1000	>1000	>1000	32	0.03	0.03	0.03	8
S5	>1000	32	64	128	8	2	0.5	0.3	4	16
S6	>1000	32	64	64	4	2	0.5	0.5	8	16
D4	>1000	>1000	512	32	128	32	>2	>30	>8	>30
D5	>1000	>1000	64	64	8	4	>16	>15	>125	>250
D6	>1000	>1000	32	32	8	4	>29	>30	>125	>250
M4	>1000	>1000	128	8	64	4	>8	>125	>15	>250
M5	>1000	32	1000	64	32	8	0.03	0.5	1	4
M6	>1000	32	128	32	А	А	03	1	8	8



in at which the polymers do not induce any ago ria growth is inhibited by at least 95 % ;[d] RBCs : Ic1 MIC is the

CSIRO

WARWICK

ACKNOWLEDGEMENTS

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United King ^b CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Victoria 3168, Australia

Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, Victoria Australia

Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC 3010, Australia ^e Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia