Supporting information: Operando Potassium K-edge X-ray Absorption Spectroscopy, Investigating Potassium Catalysts during Soot Oxidation

Catherine J. Davies,^a Alexander Mayer,^b Jess Gabb,^a Jake Walls,^b Volkan Degirmenci,^c Paul B.J. Thompson,^{d,e}, Giannantonio Cibin,^f Stan Golunski^a and Simon A. Kondrat ^{b*}

a) Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

- b) Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE113TU, UK.
- c) The School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
- d) XMaS, UK CRG, ESRF, 71 Avenue des Martyrs, 38043 Grenoble, France.
- e) Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE, UK.
- f) Diamond Light Source Ltd., Harwell Science and Innovation Camous, Didcot, OX11 0DE, UK.

Scheme 1. In situ soft edge reactor

Figure 1. XRD patterns of catalysts before and after soot oxidation. (a) α -Al₂O₃, (b) α -Al₂O₃ after soot oxidation, (c) K/ α -Al₂O₃, (d) K/ α -Al₂O₃ after soot oxidation. Patterns of (b)and (d) magnified x5 for ease of comparison with fresh materials. Labelled (hkl) values for α -Al₂O₃, (\bullet) KHCO₃, (|) K₂CO₃.xH₂O

Figure 3. O (1s) XPS spectra for K/α -Al₂O₃ and K/α -Al₂O₃ after soot oxidation. K/α -Al₂O₃ (black line and K/α -Al₂O₃ after soot oxidation (dashed red line).

Figure 4. Comparison of $\triangle CB$ for repeat runs of XANES K/α -Al₂O₃ in the presence of soot

Figure 5. Structural images from VESTA (a) K₂CO₃ (ICSD_CollCode66943) showing the 2 potassium environments (b) KHCO₃ (ICSD_CollCode2074)

Figure 6. K₂CO₃ K1 cluster size effects ranging from 6 atoms to 223 atoms

Figure 7. K₂CO₃ K2 cluster size effects ranging from 6 atoms to 223 atoms

Figure 8. Sum of K_2CO_3 K1 and K2 cluster size effects ranging from 6 atoms to 223 atoms.

Figure 9. K₂CO₃ K1 clusters compared with 5 percent expansion of bond lengths

Figure 10. K₂CO₃ K2 clusters compared with 5 percent expansion of bond lengths

Figure 11. K₂CO₃ K1 clusters compared with 5 percent contraction of bond lengths

Figure 12. K₂CO₃K2 clusters compared with 5 percent contraction of bond lengths

Figure 13. Changing ratios for the contribution of K1 and K2 in K₂CO₃

Simulation	Band A (1s	Band B (1s	Band C (1s	Band C - B			
	→3d)	→4p)	→CR)				
K2CO3 K1							
6 atoms	-	-	3620.7	-			
22 atoms	3611.8	3614.3	3620.6	6.3			
121 atoms	3612.0	3616.0	3621.0	5			
223 atoms	3612.0	3616.1	3621.0	4.9			
K2CO3 K2							
6 atoms	-	-	3623.0	-			
22 atoms	3612.3	3614.3	3621.9	7.6			
121 atoms	3611.9	3614.3	3621.7	7.4			
223 atoms	3611.9	3614.3	3621.8	7.5			
K2CO3 sum of K1 & K2							
6 atoms	-	-	3621.8	-			
22 atoms	3611.9	3614.3	3621.4	7.1			
121 atoms	3612.0	3614.5	3621.2	6.7			
223 atoms	3611.9	3614.6	3621.4	6.8			
КНСОЗ							
6 atoms	-	-	3622.2	-			
22 atoms	-	3615.3	3621.4	6.1			
50 atoms	3612.4	3615.2	3620.1 + 3623.3	4.9 + 8.1			
K2CO3 K1 expansion							
6 atoms	-	-	3621.8	-			
22 atoms	3611.5	3614.2	3619.3	5.1			
121 atoms	3611.4	3614.7	3619.5	4.8			
223 atoms	3611.3	3614.8	3619.4	4.6			
K2CO3 K2 expansion							
6 atoms	-	-	3622.7	-			
22 atoms	-	3613.9	3620.9	7.0			
121 atoms	3611.6	3613.5	3620.5	7.0			
223 atoms	3611.6	3613.5	3620.4	6.9			
K2CO3 K1 Contraction							
6 atoms	-	-	3629.5	-			
22 atoms	3612.8	3616.4	3622.7	6.3			

121 atoms	3612.7	3617.5	3622.8	5.3			
223 atoms	3612.7	3617.5	3622.8	5.3			
K2CO3 K2 Contraction							
6 atoms	-	-	3626.2	-			
22 atoms	3612.0	3616.1	3624.4	8.3			
121 atoms	3612.6	3616.1	3624.3	8.2			
223 atoms	3612.5	3616.1	3624.3	8.2			
K2CO3 sum of K1 & K2 expansion							
6 atoms	-	-	3622.1	-			
22 atoms	3611.5	3614.2	3620.7	6.5			
121 atoms	3611.5	3613.6	3620.2	6.6			
223 atoms	3611.7	3613.8	3620.1	6.3			
K2CO3 sum of K1 & K2 contraction							
6 atoms	-	-	3621.3	-			
22 atoms	3612.4	3616.0	3623.6	7.6			
121 atoms	3612.8	3616.2	3623.5	7.3			
223 atoms	3612.9	3616.1	3623.5	7.4			
K2CO3 changing ratios of K1 and K2 223 atoms							
K1:K2 90:10	3611.9	3616.1	3621.0	4.9			
K1:K2 80:20	3611.9	3616.0	3621.0	5.0			
K1:K2 70:30	3611.9	3615.4	3621.2	5.8			
K1:K2 60:40	3611.9	3614.6	3621.3	6.7			
K1:K2 50:50	3611.9	3614.6	3621.4	6.8			
K1:K2 40:60	3611.9	3614.5	3621.6	7.1			
K1:K2 30:70	3611.9	3614.4	3621.6	7.2			
K1:K2 20:80	3611.9	3614.3	3621.7	7.4			
K1:K2 10:90	3611.9	3614.2	3621.7	7.5			

Table 1. Peak positions for simulations of K_2CO_3 and KHCO₃. The peak positions are shifted by 4 eV to compare with experimental data.