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Supplementary Text 
Incident x-ray beam preparation and polarization characterization. The incident x-ray beam 
was prepared in a specified polarization using a diamond phase plate (28). The x-ray phase plate 
consisted of a diamond crystal with a nominal thickness t=800 μm and a [110] surface normal, 
mounted at an angle of 45° so that there were equal projections of the incident horizontal x-ray 
polarization onto the σ and π polarizations of the diffracting diamond planes. The plate was set 
with an angular orientation with respect to the incident beam such that the diamond (111) planes 
were misoriented by 54.74° with respect to the plane of the surface with diffraction in a Laue 
diffraction geometry. The effective thickness of the crystal at Bragg angle qΒ was thus 
teff=t/sin(35.26°+qΒ). 

The phase shift δ between the two orthogonal linear components of the x-ray beam for 
when the diamond is misoriented by Dq with respect to the Bragg condition is given by (28): 

𝛿 =
𝑟!"𝜆#𝑡!$$ sin(2𝜃%) 𝑅𝑒(𝐹&𝐹')

2𝜋𝑉"	
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Here re is the classical radius of the electron, l is the x-ray wavelength, F+ and F- are the 
structure factors of the diamond 111 and 151515 reflections, and V is the volume of the diamond unit 
cell. The vector sum of the two linear components produces an altered transmitted polarization 
depending on the value of δ. 

The transmitted beam polarization is described by the Poincaré coefficients for circular and 
linear polarization, Pc and PL (28): 

𝑃( = sin(𝛿)     (1a)
 𝑃) = cos(𝛿)     (1b) 

The polarization of the incident x-ray beam was characterized by measuring and 
normalizing the intensities IH and IV of the horizontally and vertically polarized components of the 
beam. These intensities were measured using scattering to 90 degrees in the vertical and horizontal 
directions, respectively. The Poincaré coefficients were determined from the intensities using (28, 42): 

𝑃) =
𝐼* − 𝐼+
𝐼* + 𝐼+

 

|𝑃(| = (1 −𝑃)"),/" 
This approach does not allow the sign of Pc to be determined. 
The measured and predicted values of the PL and Pc are shown in Figs. S1(a) and S1(b). 

The measured curve accurately follows the prediction. There are two notable artifacts in analysis 
shown in Fig. S1: 

(1) The intensities IH and IV were measured using polyimide foils mounted at 45° with 
respect to the beam and scattering in the horizontal and vertical directions, respectively. The 
intensities were not measured on an absolute scale and were thus normalized with respect to the 
maxima and minima of each signal, respectively. This approach likely introduces an artificially 
large value of the linear polarization PL because the value of IV is underestimated at its minimum. 

(2) The prediction does not account for the finite angular divergence and energy spread of 
the incident x-ray beam. The high-frequency oscillations apparent at low values of the angular 



deviation are thus not observed in the data. The predicted oscillations at angular offsets with a 
magnitude of more than approximately 0.05°, however, are accurately reproduced in the 
experimental data. 

The three angular settings of the phase plate for the vertical linear polarization and the two 
circular polarizations are illustrated as dashed lines in Fig. S1. The Poincaré coefficients at these 
angular settings are: (i) PL=-0.92, termed π-polarized in the text, (ii) |Pc|=0.986 and (iii) |Pc|=0.996. 
Settings (ii) and (iii) represent opposite helicities of circular polarization. The Poincaré coefficients 
are very close to 1 and are thus assumed to be exactly 1 in the analysis of the magnetic scattering 
experiments. 

 

Fig. S1. Measured and simulated Poincaré coefficients of incident x-ray beam. (A) Measured 
(square points) linear and (B) circular components of the x-ray radiation after the x-ray phase plate, 
plotted as a function of the offset between angular setting of the phase plate and the diamond 111 
Bragg angle. Vertical lines indicate the angular settings of the phase plate for (i) π linear 
polarization and (ii) L and (iii) R circular polarizations. The polarization predicted using equations 
(1a) and (1b) are plotted as solid lines. 

Prediction of magnetic diffraction intensity. The intensities of diffracted x-rays from the 008 
reflection were predicted for L- and R-circular and π-polarized linear incident polarization using 
the FDMNES software package. This code can work either using the multiple scattering theory 
under the muffin-tin approximation on the potential shape, or within the finite difference method 
with a free shape potential. In the present study, the first approach proved to be sufficient. 
Simulations were relativistic, including the spin-orbit interaction, and considered both dipole and 



quadrupole transition channels. The FDMNES simulations thus incorporate a more comprehensive 
physical description than analytic formulae, as for example in (28). 

A first guess of the electronic configuration was obtained by applying the Hund rule. The 
FDMNES code then solves the Dyson equation to calculate the electronic structure inside a cluster 
centered on the resonant atom. For the calculation reported here, the cluster had a 5 Å radius and 
contains 39 atoms. The resonant atomic form factors were then calculated from the electronic 
structure. The reflection intensities were obtained by considering also the non-resonant magnetic 
and Thomson terms, taking into account the magnetic space group and the incoming polarization. 

The flipping ratios Fcir and Fπ were calculated from the predicted intensities using the 
formulas given in the text. The predicted values of Fcir and Fπ for a range of photon energies 
spanning the Gd L2 edge are shown in Fig. 3b of the text and Fig. S2, respectively. 
 

  

Fig. S2. Predicted flipping ratios for π polarization. Predicted values of the π-polarization 
flipping ratio Fπ as a function of incident photon energy. 

Absence of Magnetic Contrast with Linear s Incident Polarization. Magnetic scattering 
contrast is not apparent in maps collected with σ linear incident polarization, in which the linear 
polarization is in the plane of the sample surface. A σ-polarized incident x-ray beam was prepared 
by setting the diamond phase plate offset angle Δq to -0.86°. Under these conditions the Poincaré 
coefficients given by extrapolating from Fig. S1 are PL»1 and |Pc|=0, corresponding to σ 
polarization. The maps of the diffracted intensity acquired with σ polarization were analyzed using 
a flipping ratio defined as 𝐹. =

/!'0(/"&/#)
3(/"&/#)

. The factors α and β are given in the main text and 
correct the intensities IL and IR accounting for the Lorentz polarization factor in the total intensity. 



Maps of the total intensity, Fcir, Fπ, and Fσ acquired at a photon energy of 7.938 keV are 
shown in Figs. 3A to D for a region near the edge of the lithographically defined GdIG feature. 
Maps of Fcir and Fπ have magnetic contrast with a magnitude similar to the maps shown in Figs. 2 
and 3. This contrast is absent in the image in Fig. S3D of the σ-polarization flipping ratio Fσ. The 
point-to-point variation of Fσ is smaller than for Fcir and Fπ and exhibits contrast corresponding to 
the noise in the x-ray measurement, with no correlation to the magnetic features. 

 

Fig. S3. Maps of total intensity and Fcir, Fπ, and Fσ flipping ratios. Nanobeam diffraction maps 
of the edge of a patterned GdIG region in which the GdIG layer is present below the dashed line. 
(A) Total intensity, sum of images acquired with L and R incident polarization, and flipping ratios 
(B) Fcir, (C) Fπ, and (D) Fσ.  

Free energy analysis and domain-wall energy calculation. The total magnetic anisotropy energy 
density of the (001)-oriented GdIG thin film ftot is the sum of the magnetocrystalline anisotropy 
energy density fanis, the magnetic shape anisotropy energy density fshape, the magnetoelastic energy 
density fmelast, and the elastic energy density felast (43). Specifically, 𝑓4567 = 𝐾,(𝑚,
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" with the 1st and 2nd order cubic anisotropy constants K1 and K2, 

respectively, and 𝑓7849: = 0.5𝜇;𝑀<
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" with the saturation magnetization Ms.  Here (m1, m2, 
m3)=(sinθcosφ, sinθsinφ, cosθ) are the directional cosines of the magnetization defined in the 
crystallographic reference system using the angles defined in the inset of Fig. S4A. The cubic 
anisotropy constants at 5 K are K1=-2.164×104J/m3, K2=(0±0.9)×103J/m3 (44), µ0 is the vacuum 
permeability, and Ms=5.52×105 A/m (4). The energy densities fmelast and felastic can be expressed as: 
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The magnetoelastic coupling coefficients at ~5 K are: B1 = -1.5l100(c11-c12) = -1.659×106 
J/m3 and B2 = -3l111c44 = 9.181×105 J/m3. The elastic stiffness coefficients are c11 = 2.731×1011 Pa, 
c12 = 1.250×1011 Pa and c44 = 0.741×1011 (45). The anisotropic magnetostriction coefficients are 



l100 = 7.47×10-6 and l111 = -4.13×10-6 (46). The elastic stiffness and the magnetostriction 
coefficients are reported from measurements at 4.2 K using GdIG single crystals. From sB# = 0 
(the condition of stress-free surfaces) and the magnetoelastic equation of state sB# =
𝜕(𝑓=:>47? + 𝑓:>47?) 𝜕𝑒B#⁄  (𝑖 = 1,2,3), one can derive 𝑒## =
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. Plugging in the expressions of 𝑒B# into Eqs. (1) and (2), omitting all terms 
that are independent of mi (𝑖=1,2,3), one has, (47, 48)  
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Minimizing Eq. (3) with respect to mi (or equivalently the angles θ and φ) allows us to 
determine the global and local energy minima under biaxial in-plane strains e11, e22, and e12. 
Assuming that the 21-nm-thick (001) GdIG film is coherently strained by the cubic (001)-oriented 
GGG substrate, one has e11 = e22 = -9.636×10-3, calculated from the experimentally measured out-
of-plane lattice mismatch. Due to the epitaxial growth of GdIG on GGG, we do not expect any 
shear strain in the film plane (e12 = 0).  

A plot of ftot as a function of θ and φ is shown in Fig. S4A. The magnetic easy axis of the 
film is predicted by minimizing ftot, as shown in Figs. 4A and B (49). The large saturation 
magnetization of GdIG at low temperature causes the demagnetization term ,

"
𝜇;𝑀<

"𝑚#
", to be 

dominant, favoring in-plane magnetization, i.e. a magnetically easy (001)-plane. This is despite 
the fact that the biaxial compressive in-plane lattice mismatch strains (e11 = e22<0) favors a 
perpendicular magnetization along the [001] or [00-1] directions via the finite magnetoelastic 
coupling.  

The anisotropy obtained from Eq. (3) and shown in Figs. S4A and B predicts that GdIG 
thin films have an in-plane magnetic easy axis. Based on this prediction, it is reasonable to assume 
that the in-plane boundary oriented along <110> boundary, as in Fig. 4B, is a 180° Néel wall, 
across which magnetization rotates, for instance, from [110] to [15150]. If the films were isotropic 
with respect to in-plane magnetization, the magnetization rotation could occur along any direction 
in the (110) plane. However, due to the predicted four-fold in-plane magnetic anisotropy (Fig. 
S4B), caused by the magnetocrystalline anisotropy, the total energy will be minimized when the 
propagation vector of magnetization rotation is along one of the four in-plane easy directions, such 
as k1 ([1150]).  

The energy density of a 180° Néel wall is given by (50): 
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while (𝑚,, 𝑚", 𝑚#) = (sin𝛽, cos𝛽, 0) for a 180° Néel wall. The isotropic exchange coefficient A 
only influences the absolute magnitude of the wall energy density.  

The 90° Néel wall energy density is half of that for a 180° Néel wall. Thus, its energetically 
favorable propagation vector should likewise follow one of the four easy in-plane directions such 
as k1. For example, consider that magnetization rotates from [110] by 90° to [1150] with a 
propagation vector along [1150] as well, the 90° Néel wall boundary should then be 45° with respect 
to both [110] and [1150], that is, the [100] direction.  

 

Fig. S4. Magnetic model. (A) Magnetic anisotropy energy density ftot of the (001) GdIG thin film 
as a function of the azimuth angles q and j defined in the inset. (B) Variation of ftot as a function 
of  j for in-plane magnetization (i.e. with q =90°).	(C) Schematic of a 180° Néel Wall with an in-
plane [110] boundary. The local magnetization (red or blue arrows) varies cycloidally across the 
[110] boundary. a is defined the angle between the propagation vector k2 and [1-10] and b is the 
angle between the local magnetization and the [110] boundary. (D) Calculated 180° Néel wall 
energy density as a function of the propagation vector direction parameterized by the angle a. 
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