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Throughout the ongoing COVID-19 pandemic, the worldwide transmission and replication 
of SARS- COV-2, the causative agent of COVID-19 disease, has resulted in the opportunity 
for multiple mutations to occur that may alter the virus transmission characteristics, the 
effectiveness of vaccines and the severity of disease upon infection. The Omicron variant 
(B.1.1.529) was first reported to the WHO by South Africa on 24 November 2021 and was 
declared a variant of concern by the WHO on 26 November 2021. The variant was first 
detected in the UK on 27 November 2021 and has since been reported in a number of 
countries globally where it is frequently associated with rapid increase in cases. Here we 
present analyses of UK data showing the earliest signatures of the Omicron variant and 
mathematical modelling that uses the UK data to simulate the potential impact of this 
variant in the UK. In order to account for the uncertainty in transmission advantage, 
vaccine escape and severity at the time of writing, we carry out a sensitivity analysis to 
assess the impact of these variant characteristics on future risk. 
 
 
 
Introduction 
Throughout the ongoing COVID-19 pandemic, the worldwide transmission and replication of SARS-
COV-2, the causative agent of COVID-19 disease, has resulted in the opportunity for multiple 
mutations to occur that may alter the virus’ transmission characteristics, the effectiveness of 
vaccines and the severity of disease upon infection. Some of the variants that have emerged have 
been designated variants of concern (VOC) by the World Health Organisation (WHO) owing to the 
risks that they pose and the potential for impacting the effectiveness of the ongoing worldwide 
vaccination programme. 
 
The Omicron variant (B.1.1.529) was first reported to the WHO by South Africa on 24 November 
2021 and was declared a variant of concern by the WHO on 26 November 2021 [1]. The variant 
was first detected in the UK on 27 November 2021 [2] and has since been reported in a number of 
countries globally where it is frequently associated with rapid increase in cases [3].  
The variant has around 60 mutations from the original wildtype variant from Wuhan with a large 
number of these (more than 30) in the spike protein [4]; these spike mutations have raised significant 
concerns regarding the potential effectiveness of existing vaccines and the degree of protection from 
past infections. The rapid spread of the Omicron variant within Gauteng province in South Africa, 
where it was first detected on 23 November 2021 [5], led to initial speculation that it had a significant 
transmission advantage over other circulating variants. At the time of first detection, less than 25% 
of adults in South Africa were fully vaccinated [6-7] and there was substantial uncertainty regarding 
how rapidly this variant would spread in other countries with higher vaccine uptake. 
 



 

 

Prior to the introduction of the Omicron variant into the UK, the number of daily reported cases in 
the UK was high but relatively constant whilst the average number of daily hospital admissions and 
deaths as a result of COVID-19 infections was falling throughout November 2021. However, overall 
hospital occupancy has remained high, with the National Health Service running close to capacity. 
It therefore became crucial to develop a rapid but comprehensive understanding of characteristics 
of this VOC and the impact of large-scale spread of the variant upon hospital admissions and deaths 
in subsequent weeks. Additionally, whilst around 80% of individuals aged 12 or over in the UK  have 
received two doses of vaccine, the early data indicating that the Omicron variant was exhibiting 
some level of vaccine escape, combined with the presence of waning immunity in the months 
following the second dose, suggested that there was an urgent need to accelerate the booster 
vaccination campaign in order to increase protection levels across the population. 
 
Three aspects of the Omicron variant are potentially different to Delta: its transmissibility; the degree 
of immune escape; and its severity. The higher growth of Omicron than Delta in South Africa 
suggests that a combination of higher transmissibility and immune escape (from vaccination and/or 
prior infection) results in a higher growth rate than Delta [8]. Antibody neutralisation studies indicate 
lower neutralisation compared to Delta of both convalescent and vaccinated sera, suggesting 
immune escape [9-11]. These studies are also supported by South African data showing high 
reinfection rates compared to Delta [12], and early UK data of PCR positive individuals, which 
indicate lower vaccination efficacies of both AstraZeneca and Pfizer vaccinations [4]. It has been 
claimed that Omicron displays decreased severity compared to Delta, as the South African case-
hospitalisation ratio appears to be lower for the emerging Omicron wave than for Delta. However, 
these data are triply confounded by (i) higher vaccination rates and prior infections at the time of the 
Omicron wave compared to the Delta wave; (ii) time lags before hospitalisations and deaths; and 
(iii) different age distributions of infections between the two waves. Analysis of very early UK data 
did not find a significant difference between Omicron and Delta hospitalisation rates when controlling 
for other factors, although with only 24 Omicron hospitalisations in the dataset studied, it is early to 
draw firm conclusions from this [13]. There are no credible claims of higher severity for Omicron 
compared to Delta, and therefore in this work we consider a range of relative severities from 10% to 
100%. 
 
In this paper, we present analyses of UK data showing the earliest signatures of the Omicron variant 
and mathematical modelling that uses the UK data to simulate the potential impact of this variant in 
the UK. We utilise a previously developed mathematical model [14-15] that simulates the spread of 
SARS-CoV-2 within the seven NHS regions of England to predict the future spread of the Omicron 
variant, as well as the number of daily hospital admissions and deaths as a result of infection and 
how that spread may depend upon the introduction of non-pharmaceutical interventions. In order to 
account for the uncertainty in transmission advantage, vaccine escape and severity at the time of 
writing, we carry out a sensitivity analysis to assess the impact of these variant characteristics on 
future risk. 
 
Early signatures of Omicron transmission in UK Data 
Because of the high numbers of cases in the UK during November 2021, early emergence of cases 
infected with the Omicron variant were not immediately evident in the aggregate case data. We 
therefore explored the UKHSA ‘linelist’ case data for early signs of Omicron variants transmission. 
Omicron variants are further subdivided into sublineages BA.1, BA.2 and BA.3, with BA.1 by far the 
most prevalent variant of the three. Fortunately, BA.1 and BA.3 exhibit a deletion in the spike protein 
at position S69:70, a deletion also exhibited by the Alpha variant, which causes it to fail to amplify 
in the TaqPath S-Gene target (S-Gene Target Failure, SGTF) employed in UK routine testing 



 

 

‘Lighthouse’ laboratories. BA.2 does not display SGTF, and so cannot be discerned in this way, 
however so far very few sequenced cases of BA.2 have been found in the UK. 
 
It is therefore possible to track the progression of Omicron in routine tests that show SGTF, 
assuming that the majority of these are caused by Omicron cases. Figure 1 shows the coverage of 
laboratories able to identify SGTF. Coverage by Lighthouse laboratories varies in space and time. 
The highest coverage (over 80% of all tests) was in North East England in early December 2021, 
the lowest coverage was in Southwest England with less than a quarter of samples tested for SGTF, 
while the coverage for London is spatially patchy. This suggests that early indicators from the North 
East are likely to be more accurate than other regions and a possible underestimate of Omicron 
case burden, especially in the South West of England (Figure 1). 
 

 
Figure 1: Coverage of testing in England able to identify S-Gene Target Failure (SGFT). Regions of 
the South West which have lower coverage, are less likely to be able to rapidly discriminate between 
Omicron and Delta variants. 
  
 
Aggregating testing data across all age groups and all regions in England, we observed a rapid 
increase in the proportion of cases that display SGTF (compared to all of those where presence or 
absence of the S-gene target was determined) , starting towards the end of November 2021 (Figure 
2A). By considering the proportion of cases with SGTF (Figure 2A), rather than the number of cases 
with SGTF, we are able to consider the most recent data as reporting delays have a minimal effect 
on the proportion (assuming SGTF and non-SGTF have the same distribution of delays). Figure 2B 
illustrates the absolute incidence of S-gene positive and SGTF cases during the period 1 November 
to 13 December 2021: without S-gene detection the number of SGTF cases would have been too 
small to identify any growth at this early stage. During this period, the S-gene positive cases (largely 
the Delta variant) showed a slow decline, consistent with high levels of population immunity, 
whereas the SGTF cases showed a rapid increase (Figure 2C). Although still very large and positive, 
the growth rate of SGTF cases (and S-gene positive cases) may have declined slightly since the 
start of December, although this could be attributed to delays in reporting or changes in the age-
distribution of cases. (We note that the proportion of cases that display SGTF must eventually 
saturate at close to 100%, so the growth rate of this proportion only provides useful information 
when Omicron is relatively uncommon.) 



 

 

 

 
Figure 2. S-gene target failure (SGTF) in the data. A) The proportion of all test positive cases in the 
UK with SGTF between 1 November 2021 and 13 December 2021. B) The absolute incidence (new 
cases identified per day) of cases with S-gene target failure (blue) and S-gene detection (green). C) 
The inferred growth rates of S-gene positive (green) and SGTF cases (blue) and the ratio between 
them (red).    
 
 
COVID cases that are confirmed reinfections 
Since higher reinfection rates have been observed for Omicron than Delta [12], another indicator of 
the scale and speed of the omicron wave, as well as the extent of vaccine escape, is the proportion 
of cases that are reinfections. the signal of changing patterns in reinfections give a separate view of 
the unfolding Omicron wave, also partial and imperfect; reinfection information alone cannot 
discriminate between delta and omicron variants, but can be useful as an additional ‘indicative’ 
measure of omicron infection dynamics, and a signal of the likely degree of cross-protection from 
previous infections. 
 
The UKHSA ‘linelist’ case data is limited to individuals in England who tested positive for SARS-
CoV-2 for the first time only which, if there is substantial reinfection, underestimates incidence. 
Reinfection data provided by UKHSA is limited to infections which occur more than 90 days following 
the last positive test. We modelled the number of reinfections in both Pillar 1 and 2 using a 
generalized additive model with a penalised spline for secular time and accounting for the total 
number of samples tested (first + reinfections) with an offset term. Reinfections were occurring at a 
relatively low rate (1-3%) across all age groups throughout September-November 2021, and are 
likely to be reinfection with Delta (Figure 3). During early December 2021, we see a significant 
increase in the reinfection rate in nearly all age groups – but a particularly rapid increase in young 



 

 

adults (20-29 year olds) – suggesting a change in population immunity to the dominant variants, and 
likely indicative of omicron invasion and transmission establishment. 
 
Stratifying by age group and region of England (Figure S2) highlights the rapid rise in reinfection in 
the 20-29 age group is seen in all regions including regions with low SGTF coverage, and is not just 
confined to London. Reinfection rates are rising in most age groups in most regions, particularly 
adults aged 20 to 60.  

  
Figure 3. Estimated daily % of cases that are reinfections for England, stratified by age group, 
showing substantial increases during December in many age groups above a previously relatively 
constant reinfection rate for each age group, indicative of the omicron invasion. Observations are 
shown as dots, fitted spline as lines and 95% confidence intervals as shaded regions. 
 
Epidemiological characteristics of the Omicron Variant  
One of the major challenges with projecting the potential dynamics of Omicron is the limited amount 
of data to inform critical transmission and disease parameters. Because of the recent emergence of 
the Omicron variant there is still little data on vaccine efficacy against severe disease, including 
hospital admissions or death. The impact of vaccination on onward transmission if an individual 
becomes infected has been poorly quantified for any variant throughout the pandemic due to 
difficulty in accurately measuring secondary attack rates (although some information is available 
from detailed household studies). There is also limited information on the severity of Omicron 
compared to Delta in terms of the relative risk of hospital admission, and the duration of hospital 
stays. Each of these factors can have a profound effect on the projected scale of the outbreak, the 
impact on health services, and the impact of control measures. 
 
As described above, although genotyping following PCR detection is the ideal gold-standard for 
confirming Omicron infection, the rapid increase in Omicron cases since its arrival in the UK in late 
November 2021 can be readily observed as an increase in test positive cases with S-gene target 
failure (SGTF). This approach has previously been successfully used to monitor the early growth of 
the Alpha and Delta variants [16-18]. Figure 4 shows the growth in the proportion of PCR tests that 
are S-gene negative (relative to all those that generate a clear signal from the TaqPath testing), 
compared to the proportion of infections that are Omicron from simulations. 
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Figure 4: Comparison of results from the S-gene target failure within the TaqPath PCR detection 
process (black) with simulation results (red). The S-gene data show the proportion of tests with a 
strong PCR signal (cycle threshold less than 30) that are negative for the S-gene target (black dots 
show the proportion, while grey bars are the associated 95% confidence intervals). The simulation 
results are the projected proportion of newly infected individuals that have the Omicron variant. The 
left-hand figure is on a linear scale, while the right-hand figure is on a logarithmic scale. 
 
Figure 4 is a visual comparison between the rise of the SGTF cases in the data and the rise of 
Omicron infections from our transmission model. When matching model results and data (as we do 
for parameter inference), we must include the distribution of delays between infection and testing, 
the age-dependent biases in the likelihood of performing a test, and the low level of S-gene negative 
tests that were present before the invasion of Omicron.  However, here we simply plot here the most 
parsimonious results from the model projections: the projected proportion of new infections that are 
due to the Omicron variant. 
 
Achieving the fit to SGTF growth (Figure 4) requires a set of assumptions about the vaccine efficacy 
against Omicron and the level of cross-protection against Omicron from previous infections (see 
below). Once these are set, we utilise our existing MCMC inference machinery to determine the 
relative level of Omicron transmission compared to Delta. To achieve the high growth rate of S-gene 
negative results observed in all regions, we infer Omicron to be 3.18 (95% credible interval: 2.95 - 
3.78) times more transmissible than Delta, assuming the same generation time for both variants. 
 
Although we have seen an increase in reinfection, particularly in those aged 20-38 and in London 
(Figure 3 and Figure S2), it is difficult to use this information to directly estimate the level of cross 
protection afforded by infection with previous variants. The pattern of reinfection is particularly 
difficult to assess due to extreme heterogeneities in testing patterns: those regularly taking lateral 
flow tests are most likely to detect (potentially mild or asymptomatic) reinfection. In our modelling 
results we assume that those previously infected (whose immunity has not waned) have 90% 
immunity to infection by Omicron (compared to 100% against other variants), while protection 
against hospital admission is higher again at 95% - such that previous infections provide an 
additional level of protection against severe disease.  
 



 

 

 

 
Figure 5: Vaccine efficacy against symptomatic infection (top panels) and hospital admissions 
(lower panels), showing results estimated by UKHSA (black) and values used in the projections 
(colours). Efficacies for Delta and Omicron are shown as squares and circles respectively. 
 
Capturing vaccine efficacy is more complex, as this depends on the type of vaccine received, the 
number of doses, the age of the individual and the time since vaccination (and potentially the time 
between doses). Here we compare early estimates of vaccine efficacy for Omicron from UKHSA [4] 
with simple extrapolations from the model structure (Figure 5). In our model framework (see 
Supplementary methods), we assume those recently vaccinated have a fixed vaccine efficacy 
across all age-groups that depends only on the type of vaccine given, with mRNA vaccines (Pfizer 
and Moderna) assumed to generate equal efficacy. Waning of vaccine efficacy is modelled as a two-
step process with protection (against infection) eventually dropping to zero. Booster vaccination 
moves all vaccinated individuals (even those that have waned) to a boosted class, with generally 
higher efficacy. The initial level of protection against the Delta variant, the protection offered by the 
booster and the speed of waning are matched to estimated values (coloured and black squares in 
Figure 5). Recent data on projection against the Omicron variant (grey circles in Figure 5), hints at 
a potentially simple relationship: 

!"#$%&'() = !"+,-./0, 
where, Z=4 provides a good agreement for the efficacy against symptomatic infection (comparing 
blue and grey circles) - this generates an efficacy against symptomatic infection with Omicron of 
71% after boosting. We extend this scaling to estimate the protection against hospital admissions 
for Omicron (shown in red); this generates an efficacy against severe disease with Omicron of 85% 
after boosting. 
 
The assumptions about vaccine efficacy and protection from previous infection with other variants 
have direct implications about which age-groups suffer the greatest burden of the Omicron wave 



 

 

based on the current level of immunity in the population (Figure 6). Older individuals are protected 
by vaccine efficacy from boosters (although the rollout of boosters is now reaching other age-
groups); whereas younger individuals are more likely to be protected by past infection (or a mixture 
of past infection combined with vaccination). Therefore, if vaccine efficacy is lower than estimated 
then infection will be more focused in the older age-groups; if protection from past infection is lower, 
then infection will be primarily in the younger individuals. 
 

Figure 6: Estimated distribution of immune status by age from the model at the start of December 
2021. Susceptible individuals (who have no protection, blue) are concentrated in the youngest age-
groups, while those whose immunity is from infection (recovered in green) are generally below 60. 
For those above 60 years old, the vast majority are protected by booster vaccines (yellow). 

 
A comparison of the age distribution of Delta and Omicron cases as determined by SGFT status 
(Figure 7 left-hand age-pyramid) reveals some interesting characteristics (echoing the results of 
Figure S1). Delta cases dominate in the younger age groups (5-9 and 10-14) and peak again in 
those 35-44 whilst Omicron cases are highest in those aged 20-29. In contrast, modelled infections 
(right-hand pyramid of Figure 7) show less heterogeneity, with Omicron infection equally distributed 
between ages 25 and 44. Part of this discrepancy may lie in the difference between infection and 
cases; infections only become reported cases if an individual takes a lateral flow or PCR test, which 
in turn depends upon disease symptoms or testing practices. 
 



 

 

 
Figure 7: Comparison of age-structured data (left) and model projections (right) for S-gene target 
failure and variant type respectively. The age-bars are stacked such that in the left-hand plot, the 
total width of a bar is the number of all reliable samples with an S-gene target result (positive or 
negative), while red and blue correspond to samples that are S-gene positive (largely Delta) or S-
gene negative (largely Omicron) respectively. For the model simulations, the number of infections 
from each variant can be computed; we note that the right-hand plot does not account for age-
dependent testing patterns.  
 
When the dynamics are projected forward using the inferred parameter and model framework (see 
Supplementary Methods), we predict an abrupt rise in infections, hospital admissions and deaths 
(Figure 8) following the rise in S-gene target failure caused by the Omicron variant (Figure 4). In 
these simulations we include a rapid roll-out of a booster programme vaccinating 6 million people 
each week, with an expected uptake of 95% in the over 70s, 90% in those aged 50-69 and 80% in 
those aged 18-50 who have had two doses of vaccine over three months ago. As such we expect 
the majority of booster vaccination to be complete by early January 2020. 
We focus initially on simulations were the severity of Omicron is half that of Delta (Figure 8). In the 
absence of additional controls, with England remaining under Plan B (dark red lines), we project a 
large wave of infection, leading to hospital admissions peaking at 13,600 per day (9,300-21,3000) 
and deaths peaking at 2890 per day (1800-4770). The other solid lines (yellow, purple and blue) 
consider the introduction of a short, stringent circuit-breaker control lasting until 15th January, by 
which time most people will have received their booster and have the associated protection, after 
which there is a return to pre-Omicron mixing. In these scenarios, early implementation of controls 
on 19th or 26th December 2021 (blue or purple) substantially reduces the peaks; however, given 
the sudden suspension of controls on 15th January 2022, we project an additional wave of infection 
that could be larger than the initial wave. Later implementation of controls on 3rd January 2022 
(yellow) has little impact, with a comparable range of outcomes to the no control scenario. 
  



 

 

50% Severity of Omicron compared to Delta.

 
 
Figure 8: Projected dynamics for infections (left), hospital admissions (centre) and deaths (right), under different control assumptions. The dark red 
line, which gives the highest peaks, is the mean for the scenario in which only Plan B is enacted; solid lines are where Step 1 type controls are in place 
from 19th December 2021 (blue), 26th December 2021 (pink) and 3rd January 2022 (yellow) until 15th January 2022 when there is a return to pre-
Omicron mixing; dashed lines start Step 1 controls at the same time points, but relaxation starting on 15th January is more gradual. Shaded ribbons 
correspond to 95% prediction intervals. In this example we assume that Omicron is only 50% as severe as Delta, that is, the associated IHR and IFR 
(Infection:Hospital ratio and Infection:Fatality ratio) are halved.



 

 

 
In practice we are unlikely to see an immediate return to pre-Omicron social behaviour as soon as 
control measures are lifted. Although Step 4 on 19th July 2021 removed all legal restrictions on 
social mixing, there was a relative slow drift towards pre-mixing over several months. Similarly, we 
would not expect the public to instantly transition from a Step-1-type lockdown. We therefore 
consider scenarios (dashed lines in Figure 8) where Step-1 controls relax over 3 months from 15th 
January 2022 to 15th April 2022. Under these relaxation assumptions, any resurgence occurs far 
later and is of lower magnitude, allowing public health services time to consider a range of other 
mitigation measures. 
 
To investigate the range of potential dynamics more fully, we explore a range of control measures 
(strength of NPI control and implementation times) and a range of disease severity (from 100% as 
severe as Delta to just 10%). We primarily focus on hospital admissions under a gradual relaxation 
of control measures from 15th January (Figure 9), but also consider a rapid return to pre-Omicron 
measures (Figure S3), and give total infections (Figure S4), hospital bed occupancy (Figure S5) and 
daily deaths (Figure S6) for a gradual relaxation of control measures. 
The top row of each figure refers to an additional 20% control by non-pharmaceutical interventions, 
compatible with Plan B being maintained from 9th December to 15th January. Under these 
assumptions of no additional control, and even assuming Omicron is just 10% the severity of Delta 
(top left of Figure 9) it is still highly likely that hospital admissions will peak above 1500 per day. If 
we assume that Omicron is as severe as Delta (top right of Figure 9) then admissions will be an 
order of magnitude larger, peaking at around 27000 admissions (PI 18000-42000). 
The middle row increases the strength of short-term control to 60% (approximately comparable with 
Steps 2 and 3 of the relaxation roadmap - although with the caveat that increasing measures to Step 
3 is unlikely to offer the same level of control as when measures reduced to Step 3). This further 
suppresses the growth of the epidemic but is insufficiently strong to reverse the early growth of 
Omicron (blue line, Figure S4). Early implementation of such controls (on 19th December) can 
dramatically suppress the peak number of hospital admissions, even when Omicron is as severe as 
Delta (middle right of Figure 9), although it produces a long tail of relatively high admissions. 
However, when Omicron is as severe as Delta (or even half as severe), these control measures still 
generate a substantial peak as large (if not larger) than previous peaks, placing a huge burden on 
the health services. 
Finally, we consider controls comparable with Step 1 (strong NPI measures but with schools open) 
in the lower row. Here we see that controls can prevent the rise of Omicron infection (Figure S4), 
although the hospital admissions continue to rise after controls are implemented due to the delay 
between infection and the need for hospital treatment. Early implementation (19th December) of 
these strong control measures leads to a continual decline in hospital admissions over the next two 
months when Omicron severity is low, and is likely to keep the January 2022 peak just below the 
scale of the January 2021 peak (4134 on 12th January) for all severities. The suppression of the 
January 2022 wave means that there is the potential for a large exit wave (although this is lower and 
more spread out than an uncontrolled wave); however, a delayed exit wave opens the possibility of 
there being new vaccines available by that time that specifically target the Omicron variant. 



 

 

 
Figure 9. Hospital Admissions for the circuit-breaker model with a gradual return to pre-Omicron mixing from 15th January to 15th April 2022. NPIs of 

a designated strength are in place from 20th December 2021 (blue), 27th December 2021 (pink) and 4th January 2022 (yellow), indicated by the 

coloured dots, until 15th January 2022. Solid lines correspond to means and the shaded ribbons the prediction intervals. Black dots represent observed 

data through to 17th December 2021. The dashed horizontal line corresponds to the previous peak of 4134 admission on 12
th
 January 2021. NPI 

strengths simulated were (from top row to bottom row): 20% (Plan B with no additional controls), 60%, 100% (Step 1). We also vary the severity of 

infection with Omicron relative to Delta, scaling the associated IHR and IFR by 10%, 20%, 50% or 100%, respectively (columns, from left to right). 

Simulations use parameters inferred using data from 17th December.



 

 

Discussion 
Here we have expanded our existing SARS-CoV-2 predictive model to include the emergence and 
transmission of the Omicron variant. We find evidence of rapid relative growth of the Omicron variant 
compared to the pre-existing Delta variant in multiple surveillance streams. It is worth stressing that 
these growth rates are faster than observed for the wild type variant in March 2020, despite the 
current levels of immunity (from infection and vaccination) and the frequent use of testing. Using 
these data, we project plausible future scenarios and explore the impact of multiple interventions. 
While we have a good understanding of the relative growth of Omicron compared to Delta from 
TaqPath PCR testing, all other measures are far less certain and are strongly influenced by lags 
within the reporting system and behavioural change. 
 
In many ways, the 100% severity projections represent a reasonable worst case when Omicron has 
identical disease characteristics to Delta, and the only limits on social mixing come from imposed 
restrictions. We therefore highlight below six elements that may impact the projected dynamics: 
 
Severity of disease and the vaccine efficacy against severe disease are the pivotal unknown 
quantities. In all simulations we have explored variations in severity, as characterised by the IHR 
and IFR (Infection:Hospital ratio, and Infection:Fatality ratio) of Omicron compared to Delta. At the 
lowest level of severity considered (10%), we only expect a tenth of the severe cases that are 
projected at the highest level of severity (100%, when Omicron and Delta have the same IFR and 
IHR values). Changes in severity also help to capture the impact of greater protection for vaccines; 
our default assumption is that vaccine efficacy against severe disease is 85% following a booster 
dose, if this value increases to 92.5% then we will halve the number of these individuals requiring 
hospital admissions - giving a comparable wave to reducing severity to 50%. To estimate hospital 
occupancy, we assume similar (age-dependent) lengths of stay in hospital for Omicron as for Delta. 
Shorter lengths of hospital stay for Omicron would reduce hospital occupancies, and thus also 
reduce pressure on the NHS. 
 
We expect there to have already been considerable behavioural change since Omicron was first 
reported in the UK the majority of which is yet to be seen in the epidemiological data. Throughout 
the pandemic we have observed that behaviour does not purely reflect restrictions, but is reactive 
to perceived risk driven by media reports, general advice and knowledge of local cases. It is highly 
likely that many of the elderly and most vulnerable have already been taking some measures to limit 
their exposure. This differential behaviour within the population, would have a limited impact on the 
general rising levels of infection, but would reduce the numbers that may need to attend hospital. 
The Warwick model is not partitioned by vulnerability, so this factor is difficult to account for within 
the projections.  
Even if no additional control measures are brought into effect, it is highly likely that the population 
will continue to change their behaviour in response to increasing levels of infection and presumably 
increasing media coverage. Such dynamic changes are beyond the current capacity of the model, 
but would act to reduce the peak -- although the delay from changing behaviour to affecting the 
admission to hospitals could mean that behaviour changes are too late to have a large effect.  
Given the high level of testing that is currently undertaken, and the high level of testing expected 
over the Christmas period, there is also the possibility that some level of control may be afforded by 
isolation of contacts. Historically, high cases in early July 2021 led to large numbers of individuals 
isolating - the so-called “pingdemic” - and a dramatic decline in subsequent infections. 
 
Throughout we have assumed that Omicron has the same generation time distribution as Delta - 
essentially the same latent and infection periods. However, the rapid increase of Omicron relative 
to Delta could partially be due to a shorter generation time; Omicron would still need to have a 



 

 

competitive advantage over Delta but this would be magnified by a shorter generation time. As such, 
if the generation time of Omicron was half that of Delta (so around 2.5-3 days instead of 
approximately 5-6 days), once the model is recalibrated to match the growth of SGTF, this would 
approximately halve the predicted peak outbreak sizes. 
 
One unknown parameter throughout much of the pandemic has been the impact of vaccination on 
onward transmission -- the reduction in transmission from a vaccinated individual (compared to a 
non-vaccinated individual) who becomes infected. We make the assumption that this reduction is 
30%, in line with our estimates for Delta, but higher or lower values (either due to the booster or due 
to lower efficacy against Omicron) will impact the size of the Omicron wave. 
 
The model is deterministic and operates at the scale of NHS regions; both of these factors lead to 
high levels of spatial and structural synchrony of epidemic waves. Preliminary data suggests that 
Omicron is concentrated in younger age-groups (20-40) and in urban areas. Less synchrony 
between age-groups and between spatial locations could lead to multiple asynchronous epidemics 
in each region, reducing the height of the projected peaks but increasing their duration. 
 
Slight discrepancies in the estimated distribution of lags between infection and detection, or between 
infection and hospital admission can push the projections out by a few days. Under normal 
circumstances an error of a few days is irrelevant, but with infection doubling every two days this 
can substantially disrupt the fit between models and data. It will not substantially change the height 
of the peak, but can influence the timing.  
 
Despite these caveats, our projections show that Omicron, due to its rapid growth, can generate 
levels of infection that could disrupt many services and levels of hospital admissions that will place 
a severe burden on the health services. Determining the optimal control policy is highly dependent 
on the objective, but several general conclusions can be drawn. First, strong controls enacted 
early bring the greatest reduction in infections, hospital admissions and deaths during the first 
wave of Omicron. Second, small initial waves lead to larger exit waves, with exit waves of deaths 
and hospital admission relatively larger than the exit wave of infection due to changes in the age-
distribution of infection. However, such later exit waves, which tend to peak in April 2022, provide 
the opportunity to learn more about the Omicron variant and to instigate specific controls. 



 

 

 
 

SUPPLEMENTARY FIGURES 

 
Figure S1. Dynamics of S-gene target failure (blue), S-gene detection (green) and the ratio (red) for 
five age-ranges in England. Although those 18-30 show the greatest proportion of S-gene target 
failures, and hence the greatest assumed proportion of Omicron variant, all age-groups show 
comparable patterns of growth. This suggests that although Omicron was initially concentrated in 
the 18-30 age group, it has now spread to all others and is growing at a similar rate. Similar findings 
are observed for different UK regions, and ethnicities (not shown). 
 



 

 

 
 

 
 
Figure S2. Estimated daily % of cases that are reinfections for England, stratified by age and region.Observations are shown as dots, fitted splines as 
lines and the 95% confidence intervals as shaded regions.  



 

 

 
Figure S3. Hospital Admissions for the circuit-breaker model with a rapid return to pre-Omicron mixing on 15th January 2022. NPIs of a designated 
strength are in place from 20th December 2021 (blue), 27th December 2021 (pink) and 4th January 2022 (yellow), indicated by the coloured dots, until 
15th January 2022. Solid lines correspond to means and the shaded ribbons the prediction intervals. Black dots represent observed data through to 
17th December 2021. The horizontal line represents the previous peak of 4134 admissions on 12th January 2021. NPI strengths simulated were (from 
top row to bottom row): 20% (Plan B with no additional controls), 60%, 100% (Step 1). We also vary the severity of infection with Omicron relative to 
Delta, scaling the associated IHR and IFR by 10%, 20%, 50% or 100%, respectively (columns, from left to right).  Simulations use parameters inferred 
using data from 17th December.  



 

 

 
Figure S4. All new infections (symptomatic, asymptomatic, first infections and re-infections) for the circuit-breaker model with a gradual return to pre-
Omicron mixing from 15th January to 15th April 2022. NPIs of a designated strength are in place from 20th December 2021 (blue), 27th December 
2021 (pink) and 4th January 2022 (yellow), indicated by the coloured dots, until 15th January 2022. Solid lines correspond to means and the shaded 
ribbons the prediction intervals. NPI strengths simulated were (from top row to bottom row): 20% (Plan B with no additional controls), 60%, 100% (Step 
1). We also vary the severity of infection with Omicron relative to Delta, scaling the associated IHR and IFR by 10%, 20%, 50% or 100%, respectively 
(columns, from left to right); it is assumed that length of stay is the same for Omicron and Delta. Simulations use parameters inferred using data from 
17th December.  



 

 

 
Figure S5. Hospital Bed Occupancy for the circuit-breaker model with a gradual return to pre-Omicron mixing from 15th January to 15th April 2022. 
NPIs of a designated strength are in place from 20th December 2021 (blue), 27th December 2021 (pink) and 4th January 2022 (yellow) until 15th 
January 2022. Solid lines correspond to means and the shaded ribbons the prediction intervals. Black dots represent observed data through to 17th 
December 2021. The horizontal line represents the previous peak occupancy of 34,336 on 18th January 2021. NPI strengths simulated were (from top 
row to bottom row): 20% (Plan B with no additional controls), 60%, 100% (Step 1). We also vary the severity of infection with Omicron relative to Delta, 
scaling the associated IHR and IFR by 10%, 20%, 50% or 100%, respectively (columns, from left to right); it is assumed that length of stay is the same 
for Omicron and Delta. Simulations use parameters inferred using data from 17th December.  



 

 

 
Figure S6. Daily deaths for the circuit-breaker model with a gradual return to pre-Omicron mixing from 15th January to 15th April 2022. NPIs of a 
designated strength are in place from 20th December 2021 (blue), 27th December 2021 (pink) and 4th January 2022 (yellow) until 15th January 2022. 
Solid lines correspond to means and the shaded ribbons the prediction intervals. Black dots represent observed data through to 17th December 2021. 
The horizontal line represents the previous peak of 1244 on 19th January 2021 NPI strengths simulated were (from top row to bottom row): 20% (Plan 
B with no additional controls), 60%, 100% (Step 1). We also vary the severity of infection with Omicron relative to Delta, scaling the associated IHR 
and IFR by 10%, 20%, 50% or 100%, respectively (columns, from left to right). Simulations use parameters inferred using data from 17th December.



 

 

SUPPLEMENTARY METHODS 

Here we detail the underlying mathematical framework that defines the transmission model. We 

break the model into multiple sections that combine to generate a picture of SARS-CoV-2 

transmission in the UK. This model structure has been detailed in previous publications [14,15,19-

21] but we review the details here for completeness. 

  

Infection modelling 
As is common to most epidemiological modelling we stratify the population into multiple disjoint 

compartments and capture the flow of the population between compartments in terms of ordinary 

differential equations. At the heart of the model is a modified SEIR equation, where individuals may 

be susceptible (S), exposed (E), infectious with symptoms (I), infectious and either asymptomatic or 

with very mild symptoms (A) or recovered (R). Both symptomatic and asymptomatic individuals are 

able to transmit infection, but asymptomatic infections do so at a reduced rate given by !. Hence, 

the force of infection is proportional to I+!A. To some extent, the separation into symptomatic (I) and 

asymptomatic (A) states within the model is somewhat artificial as there are a wide spectrum of 

symptom severities that can be experienced, with the classification of symptoms changing over time. 

Our classification reflects early case detection, when only relatively severe symptoms were 

recognised. 

To obtain a better match to the infection time scales, we model the exposed class as a 3-stage 

process - this provides a better match to the time from infection to becoming infectious, such that in 

a stochastic formulation the distribution of the latent period would be an Erlang distribution. 

 

where "-1
, and #-1

 are the mean latent and infectious periods, while d is the proportion of infections 

that develop symptoms. 

  

Age Structure & Transmission Structure 
The simple model structure is expanded to twenty-one 5-year age-groups (0-4, 5-9, .... ,95-99, 

100+). Age has three major impacts on the epidemiological dynamics, with each element 

parameterised from the available data: 

●  Older individuals have a higher susceptibility to SARS-CoV-2 infection (captured by the 

parameter $). 

●  Older individuals have a higher risk of developing symptoms, and therefore have a greater 

rate of transmission per contact. 

●  Older individuals have a higher risk of more severe consequences of infection including 

hospital admission and death. 



 

 

The age-groups interact through four who-acquired-infection-from-whom transmission matrices, 

which capture the epidemiological relevant mixing in four settings: household (%H
), school (%S

), 

workplace (%W
) and other (%O

). We took these matrices from Prem et al. [22] to allow easy translation 

to other geographic settings, although other sources could be used. 

One of the main modifiers of mixing and therefore transmission is the level of precautionary 

behaviour, & (see Figure 2 of the main text). This scaling parameter changes the who-acquired-

infection-from-whom transmission matrices in each transmission setting, such that when &=1 mixing 

in workplaces and other settings take their lowest value, whereas when &=0 the mixing returns to 

pre-pandemic levels. Mixing within the school setting follows the prescribed opening and closing of 

schools. 

 

  

For simplicity of notation, we write the sum of the four age-structured mixing matrices as %(&). 

  

To ensure that we can replicate the long-term dynamics of infection we allow the population to age. 

The aging process occurs annually (corresponding to the new school year in September) in which 

approximately one fifth of each age-group moves to the next oldest age cohort — small changes to 

the proportion moving between age-groups are made to keep the population size within each age-

group constant. 

  

Capturing Quarantining 
One of the key characteristics of the COVID-19 pandemic in the UK has been the use of self-isolation 

and household quarantining to reduce transmission. We approximate this process by distinguishing 

between first infections (caused by infection related to any non-household mixing) and subsequent 

household infections (caused by infection due to household mixing). The first symptomatic case 

within a household (which might not be the first infection) has a probability (H) of leading to 

household quarantining; this curtails the non-household mixing of the individual and all subsequent 

infections generated by this individual. 

                                                                                                                                           

In our notation, we let superscripts denote the first infection in a household (F), a subsequent 

infection from a symptomatic household member (SI) and a subsequent infection from an 

asymptomatic household member (SA); the first detected case in a household who is quarantined 

(QF) and all their subsequent household infections (QS). For a simple SEIR model (ignoring multiple 

E categories and age-structure) our extension would give: 



 

 

  

This formation has been shown to be able to reduce R below one even when there is strong within 

household transmission, as infection from quarantined individuals cannot escape the household 

[19]. 

                                              

Spatial Modelling 
Within England the model operates at the scale of NHS regions (East of England, London, Midlands, 

North East, North West, South East and South West). For simplicity and speed of simulation we 

assume that each of these regions acts independently and in isolation - we do not model the 

movement of people or infection across borders. In addition, the majority of parameters are 

regionally specific, reflecting different demographics, deprivation and social structures within each 

region. However, we include a hyper-prior on the shared parameters such that the behaviour of each 

region helps inform the value in others. 

  

 



 

 

Variant Modelling 
The model also captures the three main variants that have been responsible for most infections in 

England: the wildtype virus (encapsulating all pre-Alpha variants), the Alpha variant and the Delta 

variant. Each of these requires a replication of the infectious states for each variant type modelled. 

We assume that infection with each variant confers immunity to all variants, such that there is indirect 

competition for susceptible individuals. This competition is driven by the transmission advantage of 

each variant which is estimated by matching to the proportion of positive community PCR tests (Pillar 

2 test) that are positive for the S-gene. The TaqPath system that is used for the majority of PCR 

tests in England is unable to detect the S-gene in Alpha variants, due to mutations in the S-gene. 

The switch from S-gene positive to S-gene negative and back to S-gene positive corresponds with 

the dominance of wildtype, Alpha and Delta variants. We infer the transmissibility of Alpha and Delta 

variants to be 52% (35-71%) and 156% (117-210%) greater than wildtype, respectively. 

It is into this structure that we include the Omicron variant, setting the vaccine efficacy and level of 

cross protection, and varying the transmission rate to capture the rapid increase in infection. 

  

Vaccination Modelling

 
We capture vaccination using a leaky approach, although non-leaky (all-or-nothing) models produce 

extremely similar results over the time-scales considered. The model replicates the action of: 

●  first and second doses of vaccine, at rates v1 and v2 respectively that move susceptible 

individuals through to vaccinated states (VS1 and VS2) but have no impact on infected or 

recovered individuals; 



 

 

●  waning vaccine efficacy at rates '1 and '2, giving a two-step process from fully vaccinated 

to waned efficacy (in the equation below, for simplicity we assume everyone who gets a 

first dose of vaccine also gets a second, so that waning from state S1 is unnecessary); 

●   waning immunity at rates (1 and (2 which are assumed to be slower than the waning of 

vaccine efficacy. 

The model also needs to capture the total number of individuals who have been given a first or 

second dose of vaccine (V1 or V2 out of a total population size of N) to ensure that only individuals 

that have not been vaccinated are offered a first dose, and only individuals that have been 

vaccinated once are offered a second dose. 

 

For those in the classes where the vaccines generate protection (VS1, VS2 and WS1), the degree of 

protection is determined by the ratio of AstraZeneca (ChAdOx1) vaccine to mRNA vaccines (either 

Pfizer BNT162b2 or the Moderna COVID-19 vaccine) that has been given to that age group (see 

Table 1). If a vaccinated individual becomes infected, their probability of being admitted to hospital 

or dying - which normally only depends on age - is modified by the appropriate vaccine efficacy 

according to the ratio of the two vaccine types. Booster vaccinations are implemented by moving 

individuals in the vaccinated or waned class into a booster class where the level of protection is 

enhanced. Waning from the booster class occurs at a low rate. 

  

Parameter Inference 
Key to the accuracy of any model are the parameters that underpin the dynamics. With a model of 

this complexity, a large number of parameters are required. Some, such as vaccine efficacy, are 

assumed values based on the current literature; while others, such as the level of precautionary 

behaviour over time, are inferred from the epidemic dynamics. Bayesian inference, using an MCMC 

process, is applied to each of the seven NHS regions in England to determine posterior distributions 

for each of the regional parameters (further details are given in [14]). The distribution of parameters 



 

 

leads to uncertainty in model projections, which is represented by the 95% prediction interval in all 

graphs (this interval contains 95% of all predictions). 

As the epidemic has progressed, new posterior distributions based on the latest data are initialised 

from previous MCMC chains – ensuring a rapid fit to historical data. We match to six observations: 

hospital admissions, hospital occupancy, ICU occupancy, deaths, proportion of pillar 2 (community) 

test that are position, and the proportion of pillar 2 tests that are S-gene positive (as a signal of the 

ratio of wild-type to Alpha variant, then a signal of the ratio of Delta to Alpha variant, and more 

recently a signal of Omicron to Delta). Although not part of the transmission dynamics, these six 

quantities for each region can be generated from the number, age and type of infection within the 

model. Observations and model results are compared by considering the likelihood of generating 

the observations assuming they are Poisson distributed with a mean given by the results of the 

deterministic model. 

 



 

 

Table 1. Vaccine efficacy and protection from prior infection assumptions for the Delta variant and Omicron variant. In England, individuals who 
receive COVID-19 booster vaccinations receive a full dose of Pfizer or a half dose of Moderna, regardless of which primary course was received. AZ 
= ChAdOx1 vaccine; mRNA = BNT162b2 (Pfizer) or mRNA-1273 (Moderna) vaccines; 1 = one dose; 2 = two doses; B = booster dose, W = waned 
protection, and mean time to reach that value. 

  Prior infection AZ primary, mRNA booster mRNA primary, mRNA booster 

Variant Outcome Non- 
Omicron 

Omicron W 1 2 B W 1 2 B W 

Delta 
Infection 100% 100% 

0%,  
1860 days 

45% 70% 88% 
0%,  

460 days 
55% 85% 88% 

0%,  
460 days 

Symptoms 100% 100% 
0%,  

1860 days 
45% 70% 92% 

0%,  
460 days 

55% 90% 92% 
0%,  

460 days 

Hospital 
Adm. 

100% 100% 
0%,  

1860 days 
80% 92% 96% 

0%,  
460 days 

80% 95% 96% 
0%,  

460 days 

Death 100% 100% 
0%,  

1860 days 
80% 97% 99% 

0%,  
460 days 

80% 98% 99% 
0%,  

460 days 

Omicron 
Infection 90% 100% 

0%,  
1860 days 

4% 24% 60% 
0%,  

460 days 
9% 52% 60% 

0%,  
460 days 

Symptoms 90% 100% 
0%,  

1860 days 
4% 24% 72% 

0%,  
460 days 

9% 52% 72% 
0%,  

460 days 

Hospital 
Adm. 

90% 100% 
0%,  

1860 days 
41% 71% 85% 

0%,  
460 days 

41% 81% 85% 
0%,  

460 days 

Death 90% 100% 
0%,  

1860 days 
41% 88% 94% 

0%,  
460 days 

41% 92% 94% 
0%,  

460 days 
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