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Rate response of neurons subject to fast or frozen noise:
From stochastic and homogeneous to deterministic and heterogeneous populations
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The response of a neuronal population to afferent drive can be expected to be sensitive to both the distribution
and dynamics of membrane voltages within the population. Voltage fluctuations can be driven by synaptic
noise, neuromodulators, or cellular inhomogeneities: processes ranging from millisecond autocorrelation times
to effectively static or “frozen” noise. Here we extend previous studies of filtered fluctuations to the experimentally
verified exponential integrate-and-fire model. How fast or frozen fluctuations affect the steady-state rate and firing-
rate response are both examined using perturbative solutions and limits of a 1 + 2 dimensional Fokker-Planck
equation. The central finding is that, under conditions of a more-or-less constant population voltage variance,
the firing-rate response is only weakly dependent on the fluctuation filter constant: The voltage distribution is
the principal determinant of the population response. This result is unexpected given the nature of the systems
underlying the extreme limits of fast and frozen fluctuations; the first limit represents a homogeneous population
of neurons firing stochastically, whereas the second limit is equivalent to a heterogeneous population of neurons
firing deterministically.
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I. INTRODUCTION

Neurons in situ are subject to fluctuations arising from a
variety of biophysical phenomena with intrinsic correlation
times spanning a wide range: fast excitatory AMPA and
inhibitory GABAa synapses at the 1–10 millisecond time
scale; slow excitatory NMDA and inhibitory GABAb synapses
at 10–100 of milliseconds; neuromodulators such as acetyl-
choline, dopamine, and adenosine acting on time scales of
minutes or longer; and static fluctuations or “frozen noise”
that arise, for example, from the range of resting potentials of
neurons within an inhomogeneous population.

The resulting distribution and dynamics of membrane
voltages within a population of neurons are likely to have
a significant effect on its response to afferent synaptic drive. A
number of theoretical studies have analyzed the dependency
of the firing rate on filtered fluctuations using the leakless
and leaky integrate-and-fire (LIF) models in both the fast and
slow limits [1–6] and the quadratic integrate-and-fire (QIF)
model [7] that features a spike and reset to minus infinity [8].
One motivation of these studies was to evaluate to what
extent the steady-state firing rates derived in the analytically
convenient limit of white-noise fluctuations approximated
the more biophysically realistic case of synaptic filtering at
AMPA (2 ms) or GABAa (10 ms) time scales. Leading-order
corrections to the white-noise limit were derived for the
steady-state rate and shown to differ qualitatively for the
LIF model ∼

√
τs/τv [1,5] and the QIF model ∼τs/τv [8],

where τs is the filter time constant and τv the membrane
time constant. The different scalings arise from the dis-
tinct ways fluctuations interact with the discontinuous, low
threshold of the LIF or the smoother, parabolic threshold of
the QIF, highlighting the singular nature of the LIF model
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when compared to integrate-and-fire models with explicit
spikes

The exponential integrate-and-fire (EIF) model [9] is in
the same class of type-I neuron as the QIF and has been
recently shown to provide an accurate reduced description
of the response properties of neocortical layer-5 pyramidal
cells [10] and fast-spiking interneurons [11]. In place of
the parabolic spike-generating mechanism of the QIF model,
the EIF neuron features an exponential term that models
well the activation of the sodium current. This threshold is
functionally sharper than the QIF and can capture the kinklike
spikes seen in vivo [12]. The current-voltage relation of the
EIF is, in some sense, intermediate between the LIF and the
QIF, and additionally it provides an accurate reduced-model
fit to experiment. It is therefore of interest technically and also
from the point of incorporating further biological realism into
an experimentally verified model, to analyze the firing-rate
properties of the EIF neuron subject to fluctuating drive: This
is the aim of this paper.

In Sec. II, the Fokker-Planck equation describing the EIF
neuron driven by an Ornstein-Uhlenbeck (filtered white-noise
process) is written in a form that allows for a perturbative
solution in the limits of either fast or slow filtering. In
Sec. III, solutions are provided for white, fast (weakly
filtered), and frozen noise, adapting approaches previously
developed for the QIF [8] and the LIF [6] steady-state rates.
In Sec. IV the existing methodology is then generalized to the
firing-rate response in the presence of filtered fluctuations, by
considering how the instantaneous firing rate of a population
of neurons is modulated by an oscillating current. As will
be seen, under conditions of similar voltage distributions
the steady-state rate and firing-rate response are surprisingly
insensitive to the time scale of the filtering: The implication
and scope of this result are considered in the Discussion in
Sec. V. Finally, an appendix provides details of an efficient
numerical scheme [13] that may be employed to calculate the
various ratelike quantities derived in this paper.
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II. THE MODEL

A nonlinear integrate-and-fire neuron has a membrane
voltage V driven by a zero-mean fluctuating variable S:

τv

dV

dt
= F (V ) + S, (1)

τs

dS

dt
= σv

√
2(τv + τs) ξ (t) − S. (2)

In this paper the function F (V ), which is proportional to the
ionic current, is taken to be that of the EIF model [9]. This
function is parameterized by the equilibrium potential E, spike
threshold VT , and spike sharpness $T :

F (V ) = E − V + $T exp[(V − VT )/$T ]. (3)

A spike is registered when the voltage reaches Vth after which
it is immediately reset to Vre. The limit Vth →∞ is taken in the
analyses that follow. In the treatment of the QIF model [8] the
reset was set at minus infinity. Unfortunately this is not possible
for the EIF model, which requires a finite reset, complicating
the analysis somewhat. Note that there is no reset or threshold
for the fluctuating variable S.

Any tonic, conductance-based component [14] of the fluct-
uations has been absorbed into the definition of the voltage
time constant τv , and the remaining fluctuations S are treated
in the Gaussian approximation [15]. The zero-mean Gaussian
white noise ξ (t) is delta correlated 〈ξ (t)ξ (t ′)〉 = δ(t−t ′) and
has a prefactor chosen so that σ 2

v would be the voltage variance
in the absence of a spike-generating mechanism (for the case
VT →∞). The idea, therefore, is to examine the effect of
synaptic filtering on the firing rate while keeping the voltage
distribution roughly constant. This formulation differs slightly
from that employed by Ref. [8] but has the advantage of
lightening the analysis in the limit of frozen fluctuations.

Before giving the equations for a population of neurons it
proves convenient to render the main quantities dimensionless
by measuring time in units of τv and introducing the ratio
κ2 = τs/τv , by rescaling the voltage v = (V −E)/σv , and by
rescaling the fluctuations sσv = S

√
κ2/(1 + κ2). In terms of

these variables:
dv

dt
= f (v) + s

κ

√
1 + κ2, (4)

κ2 ds

dt
=

√
2κ2 ξ (t) − s, (5)

where f (v) = δT exp[(v−vT )/δT ] − v with vT and δT being
the appropriately scaled spike threshold and sharpness, and
similarly for the reset potential vre.

A. The Fokker-Planck equation

A population of neurons with dynamics obeying Eqs. (1)
and (2) is considered, each receiving an independent realiza-
tion of the fluctuating term ξ (t). Standard methods [16] allow
for a 1 + 2 dimensional Fokker-Planck equation to be written
describing the evolution of the density P(v,s,t) of neurons
with voltages near v and fluctuations near s. The continuity
equation in terms of the voltage flux J v and fluctuation flux
J s , with the reset boundary condition explicit, is

∂tP + ∂vJ v + ∂sJ s = J thδ(v − vre), (6)

where J th is J v evaluated in the limit v → ∞. The fluxes
obey

J v =
(

f + s

κ

√
1 + κ2

)
P,

− κ2J s = ∂sP + sP. (7)

The instantaneous firing rate averaged across the population is
R(t) =

∫
dsJ th(s,t). The continuity and flux equations can be

combined to yield the Fokker-Planck equation for the system

LsP = κ2∂tP + κ
√

1 + κ2 ∂v(sP)

+ κ2∂v[fP − (fP)thθ (v − vre)]. (8)

The operator Ls = ∂2
s + ∂ss has two solutions forLsφ = 0 but

only the even, Gaussian solution φ(s) = e−s2/2/
√

2π allows
for normalizable probability densities. Note that φ(s) is also
the marginal probability density for s. The following results
will also be useful:

Ls(sφ) = −sφ and Ls(s2φ) = 2(1 − s2)φ. (9)

The step function θ (v−vre) in Eq. (8) comes from moving the
Dirac δ function in Eq. (6) under the voltage derivative, and
(fP)th = J th comes from taking the limit vth → ∞ in the
voltage flux Eq. (7).

Following Ref. [8] the Fokker-Planck Eq. (8) will be
expanded in powers of κ to derive the first- and second-order
corrections to the white-noise τs = 0 limit. The equation has
an invariance under simultaneous sign inversions of κ and s,
which can be usefully exploited in the small-κ perturbation
expansion:

P(v,s,t ; κ) =
∞∑

n=0

κnPn(v,s,t) = P(v, − s,t ; −κ)

=
∞∑

n=0

κn(−1)nPn(v, − s,t), (10)

so that the nth component Pn of the expanded probability
density is an even function of s if n is an even integer (or
equivalently odd). Because the firing rate R(t) involves an
integral over s, a consequence of the even-odd symmetry is
that there is no contribution to the firing rate at first order in κ
(or any odd order).

The notational conventions are now illustrated using the
probability density as an example; a calligraphic font P(v,s,t)
denotes the full time-dependent quantity, a standard font
P (v,s) denotes the steady state, and a quantity with a hat
P̂ (v,s,ω) is the complex, frequency-dependent amplitude of a
sinusoidally modulated quantity [due to an oscillating afferent
current E→E + Êeiωt in Eq. (3)], so that the total probability
density can be written P ) P + P̂ eiωt for a weak modulation.
Numerical subscripts denote the order of expansion, so Pn is
the strength of the contribution at order κn to the steady-state
probability density.

III. STEADY-STATE RATE

For the steady state the method used for the QIF [8] is fol-
lowed, with differences arising from the finite reset condition,
the exponential rather than quadratic spike, and the definition
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of the fluctuation amplitude in Eq. (5). As it will be convenient
to take moments with respect to powers of s of various
quantities, the notation {sm} =

∫
dssmP (v,s) is introduced

where {1} =
∫

dsP (V,s) is the marginal distribution for the
voltage. Integrating the continuity equation over s, substituting
for J v , and integrating voltage over −∞→v yields

f {1} +
√

1 + κ2

κ
{s} = R θ (v − vre), (11)

where R =
∫

dsJ th is the steady-state rate. Multiplying the
Fokker-Planck Eq. (8) in the steady state by s and integrating
over the full range of s yields

{s} = −κ
√

1 + κ2 ∂v{s2}
+ κ2∂v[f {s} − (f {s})thθ (v − vre)]. (12)

Combining (11) and (12) yields the equation

R θ (v − vre) = f {1} − (1 + κ2)∂v{s2}
− κ

√
1 + κ2∂v[f {s} − (f {s})thθ (v − vre)],

(13)

which is now used to derive the corrections to the density and
rates order-by-order in κ .

A. Zeroth-order solution

The Fokker-Planck Eq. (8) at zero order in κ givesLsP0 = 0
implying that the distribution factorizes P0(v,s) = φ(s)Q0(v),
where φ(s) is the unit-variance Gaussian previously identified
and Q0 = {1}0 is the marginal steady-state voltage distribu-
tion. From this, it must be that {s2}0 = Q0 also, and so Eq. (13)
yields

(f − ∂v)Q0 = R0 θ (v − vre)

to give

Q0 = R0

∫ ∞

v

dv′e−
∫ v′
v dv′′f (v′′)θ (v′ − vre), (14)

which is the familiar form [9] for the white-noise case. The
firing rate R0 can be extracted by applying the normalization
condition

∫
dvQ0 = 1.

B. First-order solution

Equation (8) requires that LsP1 = s∂vP0. There can be no
complementary function of the form φ(s)Q1(v) to the solution
of this equation because P1(v,s) is an odd function of s.
So using result (9) the first-order density is P1 = −sφ∂vQ0.
Additionally, because P1 is odd in s there is no contribution to
the firing rate, so R1 = 0.

C. Second-order solution

On evaluating Eq. (8) at order κ2, substituting for P1 in
terms of Q0, and making use of the differential Eq. (14) for Q0,
the second-order Fokker-Planck equation reduces to LsP2 =
(1−s2)∂2

vP0. Applying the second result from equation set (9)
gives a general solution of the form

P2 = φQ2 + φ
s2

2
∂2
vQ0. (15)

It remains to derive an equation for the complementary solution
Q2(v). The zero and second moments of Eq. (15) with respect
to s are

{1}2 = Q2 + 1
2 ∂2

vQ0 and {s2}2 = Q2 + 3
2 ∂2

vQ0. (16)

So {1}2 = {s2}2 − ∂2
vQ0, which can be substituted into Eq. (13)

evaluated at order κ2:

(f − ∂v){s2}2 = R2θ (v − vre) + (∂vQ0)(1 − ∂vf )

− R0

δT

δ(v − vre), (17)

where the results {s2}0 = Q0, {s}1 = −∂vQ0, and
(f ∂vQ0)th = −R0/δT in the limit vth → ∞ have all
been used. This equation can be tidied up further by
moving the Heaviside function and part of the Dirac delta
function under the (f − ∂v) operator by using the relation
(f − ∂v)Q0 = R0θ (v − vre) and its voltage derivative. The
resulting equation

(f − ∂v)({s2}2 − R2Q0/R0 + ∂vQ0/δT )

= ∂vQ0 − (∂vf )(∂vQ0 + Q0/δT ) (18)

can be solved and integrated from −∞ → v to yield

{s2}2 = R2

R0
Q0 − ∂vQ0

δT

+
∫ ∞

v

dv′e−
∫ v′
v

duf (u)

×
[
∂vQ0 −

(
∂vQ0 + Q0

δT

)
∂vf

]
. (19)

The variance of s is unity and fully accounted for at zero order;
therefore

∫
dv{s2}2 = 0. Using this result, and the facts that the

full-range voltage integral of Q0 is unity and the same integral
of ∂vQ0 is zero, means that integrating (19) over voltage gives
the second-order contribution to the steady-state rate R2 as the
double integral

R0

∫ ∞

−∞
dv

∫ ∞

v

dv′e−
∫

v′
v duf (u)

[(
∂vQ0 + Q0

δT

)
∂vf − ∂vQ0

]
.

(20)

From the second of equation set (16) Q2 can be found, which
in turn yields the second-order contribution to the probability
density

P2 = φ

[
R2

R0
Q0 − ∂vQ0

δT

+ 1
2

(s2 − 3)∂2
vQ0

]

+ φ

∫ ∞

v

dv′e−
∫ v′
v

duf (u)
[
∂vQ0 −

(
∂vQ0 + Q0

δT

)
∂vf

]
.

(21)

Threshold Integration [13] provides an efficient method for
solving Eq. (17) or (18) numerically. In general this is a
much more convenient way of arriving at the rate R2 or the
function {s2}2 than numerically evaluating the integrals (see
the Appendix for details).

D. Limit of frozen fluctuations

Finally, the limiting result for κ →∞ will be derived
following the method used in Ref. [6]. Starting with the
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Fokker-Planck Eq. (8) and remembering that now κ−1 is the
small parameter, the zero-order equation is

(s + f )P∞ = (f P∞)thθ (v − vre), (22)

where, with a minor abuse of notation, the ∞ subscript
corresponds to the case where κ →∞. The joint probability
density can be written as P∞(v,s) = P∞(v|s)φ(s), where,
because the fluctuations are effectively frozen from the point
of view of the voltage variable, P∞(v|s) = Pdet is the voltage
density for a deterministic neuron with constant input s
obeying v̇ = f (v) + s. If s is below the critical value sc =
vT − δT for the EIF model [9] the neuron does not fire and its
density is the Dirac delta function δ(v − vs), where vs is the
stable fixed point of the equation s + f (vs) = 0. Above the
critical drive sc the probability density and firing rate Rdet are

Pdet = Rdetθ (v − vre)
f + s

with Rdet = 1∫ ∞
vre

dv
f +s

. (23)

Hence (f P∞)th = θ (s − sc)φ(s)Rdet, and the firing rate in the
frozen limit must be

R∞ =
∫ ∞

−∞
(f P∞)thds =

∫ ∞

sc

dsφ(s)Rdet(s). (24)

This form is intuitive because it represents a weighted average
of deterministic firing rates over the distribution of s. It is iden-
tical to a form previously found for the LIF [6] and, as noted

in Ref. [17], also generalizes to non-Gausssian distributed
frozen fluctuations. In this limit of slow noise, therefore, the
original homogeneous, stochastic system becomes identical to
a heterogeneous population of deterministic neurons, some of
which are quiescent, whereas others are spiking regularly with
a variety of fixed periods.

E. Summary for the steady state

The results for fast and slow fluctuations are compared
for an example EIF model in Fig. 1. Figure 1(A) shows the
steady-state firing rate for the white-noise [green, Eq. (14)] and
frozen-noise [red, Eq. (24)] limits demonstrating a surprisingly
close agreement for what are very different systems. The
fast-noise expansion R0 + κ2R2, with τs = 2 ms [black line,
Eq. (20) for R2], is also provided and compared to Monte
Carlo simulations (black symbols). Two examples are chosen:
(i) a suprathreshold-firing regime and (ii) a subthreshold-firing
regime with the corresponding probability densities for the
white and frozen limits provided as insets in the same panel.
The agreement between the densities for the two limits in the
subthreshold regime is a direct consequence of the choice of
noise amplitude in Eq. (2) that ensures that the variance of the
voltage is filter-constant independent as long as the voltage
dynamics are not too strongly affected by the exponential term
in Eq. (1). A similar argument for the suprathreshold regime
accounts for why, in this case, there is more of a discrepancy
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FIG. 1. (Color online) Steady state of the EIF model subject to filtered noise. (A) Steady-state rate for white-noise [green line, Eq. (14)],
fast-noise expansion R0 + κ2R2 with τs = 2 ms [black line, Eq. (20) for R2], deterministic [blue line, Eq. (23)] and frozen-noise [red line,
Eq. (24)] cases. Insets show the probability distributions for two example firing regimes: (i) suprathreshold with E = −52 mV and (ii)
subthreshold with E = −58 mV for white and frozen limits. Note the discontinuity at V = Vre = −60 mV for the frozen-noise limits. The
Gaussian distributions (blue dashed lines) correspond to φ used in Eq. (24) for the two examples. (Bi) The variation of the steady-state rate
with the ratio τs/τv on a logarithmic scale for the suprathreshold firing regime example. (Ci) Detail of the same for small τs/τv on a linear
scale. The fast-noise expansion (black line) is compared with simulations (symbols) and agrees well up to τs )2 ms (black symbol). (Bii) and
(Cii) Corresponding curves for the subthreshold firing regime example (ii). Insets to B and C show example voltage trajectories for white and
frozen limits. Other parameters chosen were τ = 20 ms, Vre = −60 mV, Vth = 0 mV, $T = 3 mV, VT = −53 mV, and σ = 4 mV.
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between the white and frozen limits: In this regime the neuron
spends more time at depolarized voltages. It can be further
noted that the densities for frozen noise (red curves) show
jump discontinuities at V = Vre. This feature is also present
in the fast-fluctuation expansion Eq. (21) in the derivative
terms acting on Q0. The deterministic firing rate [blue line,
Eq. (23)] and Gaussian distributions for the suprathreshold
and subthreshold examples [blue dashed lines, φ(s) in Eq. (24)]
used in the construction for the frozen rate Eq. (24) are also
provided (the amplitudes are arbitrary).

Figures 1(b) and 1(c) examine the agreement between the
second-order fast-fluctuation expansion (20) and Monte Carlo
simulations for the suprathreshold and subthreshold firing-
regime examples (i) and (ii). The expansion at this order is
linear in the ratio of time constants κ2 = τs/τv and provides
a good agreement when κ2 = 0.1 corresponding to the scale
τs = 2 ms for fast AMPA excitatory synapses (black symbol).
Simulations indicate that for the parameters chosen here the
steady-state rates for slow filter constants become close to the
frozen limit around τs ∼ 10τv .

IV. FIRING-RATE RESPONSE

The firing-rate response to a weak sinusoidally modulated
current is now considered by adding a term ε̂eiωt to the right-
hand side of the scaled voltage Eq. (4). The linear response
at the population level will feature induced modulations in
the probability density P = P + P̂ eiωt and the firing rate
R = R + R̂eiωt , where both P̂ and R̂ are proportional to
ε̂. In the presence of white-noise analytical solutions to the
firing-rate modulation have been derived for the leaky IF
model [18] in terms of hypergeometric functions. For general
nonlinear IF neurons analytical forms are not available; how-
ever, a Threshold Integration scheme [13] exists that provides
exact numerical solutions for the modulated quantities in the
presence of white noise. This integration scheme will now be
generalized to the treatment of weakly filtered fluctuations.
The approach is analogous to that taken for the steady state
with the principal difference being that, at each order, there
is an additional differential equation for the net voltage flux
that needs to be solved simultaneously with the one for the
probability density.

At the linear level in ε̂ the continuity equation for the
amplitudes of the modulated probability densities and fluxes is

iωP̂ + ∂vĴ
v + ∂sĴ

s = Ĵ thδ(v − vre). (25)

For a current modulation ε̂eiωt in Eq. (4) the corresponding
flux equations, to linear order in ε̂, are

Ĵ v =
(

f + s

κ

√
1 + κ2

)
P̂ + ε̂P and

− κ2Ĵ s = ∂sP̂ + sP̂ . (26)

Integrating the continuity equation and the voltage flux
equations over s generates two equations coupled by the net
voltage flux Ĵ =

∫
dsĴ v:

R̂δ(v − vre) = iω ˆ{1} + ∂vĴ , (27)

Ĵ = f ˆ{1} +
√

1 + κ2

κ
ˆ{s} + ε̂{1}. (28)

Note that at the analogous stage in the steady-state calculation
Eq. (11) only one equation was required. Equations (25) and
(26) together yield the modulated Fokker-Planck equation

Ls P̂ = κ2iωP̂ + κ
√

1 + κ2 ∂v(sP̂ )

+ κ2∂v[ε̂P + f P̂ − (f P̂ )thθ (v − vre)] (29)

from which the modulated moment ˆ{s} can be derived:

ˆ{s} = −κ2iω ˆ{s} − κ
√

1 + κ2 ∂v
ˆ{s2}

+ κ2 ∂v[ε̂{s} + f ˆ{s} − (f ˆ{s})thθ (v − vre)] (30)

which can be substituted into (28)

Ĵ = f ˆ{1} + ε̂{1} − κ
√

1 + κ2 iω ˆ{s} − (1 + κ2)∂v
ˆ{s2}

− κ
√

1 + κ2∂v[ε̂{s} + f ˆ{s} − (f ˆ{s})thθ (v − vre)].

(31)

Equations (27), (29), and (31) are sufficient to generate pairs of
equations that can be solved numerically order by order in κ .

A. Zeroth-order solution

The Fokker-Planck Eq. (29) at zero order in κ is Ls P̂0 = 0
so P̂0 = φQ̂0 and from (27), (31)

R̂0δ(v − vre) = iωQ̂0 + ∂vĴ0, (32)

Ĵ0 = (f − ∂v)Q̂0 + ε̂Q0, (33)

which are equivalent to the white-noise case [19] as expected
and solvable by Threshold Integration [13] with details given
in the Appendix.

B. First-order solution

From Eq. (29) the first-order solution obeys Ls P̂1 = s∂vP̂0
and following similar arguments used for the steady state
P̂1 = −sφ∂vQ̂0.

C. Second-order solution

On substitution of P̂0 and P̂1, the modulated Fokker-Planck
equation at second order can be written

Ls P̂2 = iωφQ̂0 + φ∂v[f Q̂0 + ε̂Q0 − R̂0θ (v − vre)]

− s2φ∂2
v Q̂0. (34)

The first four terms (those not proportional to s2) also appear in
the zeroth-order Eqs. (32) and (33). This allows Eq. (34) to be
reduced to Ls P̂2 = (1 − s2)∂2

v P̂0 and so, following arguments
used earlier for the steady state, P̂2 = φQ̂2 + φs2∂2

v Q̂0/2,

where Q̂2 remains to be found. Using relations analogous to
those in Eq. (16) the result ˆ{s2}2 = ˆ{1}2 + ∂2

v Q̂0 can be shown
to hold also for the modulated quantities. This can be used,
together with Eqs. (27) and (31), to derive the following two
equations:

R̂2δ(v − vre) = iω ˆ{s2}2 + ∂vĴ2 − iω∂2
v Q̂0, (35)

Ĵ2 = (f − ∂v) ˆ{s2}2 + ε̂{s2}2

+ (∂vQ̂0)(∂vf − 1 + iω) + R̂0

δT

δ(v − vre), (36)
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that together constitute the generalization of Eq. (17) to si-
nusoidal modulations. These simultaneous equations for ˆ{s2}2
and Ĵ2 can be solved using the Threshold Integration scheme
by resolving them into two subpairs: One pair proportional
to R̂2 that takes care of the boundary conditions, and one
pair that accounts for all inhomogeneous terms. Once these
subsolutions have been derived a normalization condition can
be applied to extract R̂2 (see the Appendix for details).

D. Limit of frozen fluctuations

The Fokker-Planck Eq. (29) in the limit κ → ∞ is

iωP̂∞ + ∂v[(s + f )P̂∞ + ε̂P∞] = (f P̂∞)thδ(v − vre). (37)

The solutions can be separated into the form P̂∞(v,s) =
P̂∞(v|s)φ(s), where P̂∞(v|s) = P̂det is the modulated density
for the deterministic system with a constant current s with a
rate R̂det = (f P̂∞(v|s))th. The total modulated rate therefore
takes the form

R̂∞ =
∫ ∞

sc

dsφ(s)R̂det(s), (38)

where sc is the critical current below which the neuron does
not fire. The interpretation of the homogeneous stochastic

population becoming identical to a heterogeneous determin-
istic population, in this limit, holds also for the firing-rate
response. The deterministic rate modulation, from the solution
of Eq. (37), is

R̂det = ε̂ iωRdet

eiω/Rdet − 1

∫ ∞

vre

dv

(f + s)2
exp

(
iω

∫ v

vre

dv

f + s

)
.

(39)

This is the generalization to the EIF of the early result [20]
for the leakless integrate-and-fire model. Note that the denom-
inator vanishes when the modulation frequency is a multiple of
the deterministic steady-state rate, leading to an infinite series
of divergences in the deterministic rate response [see inset to
Figs. 2(Ai–ii)].

E. Summary for the firing-rate response

The results for the rate modulation of a population of EIF
neurons, receiving modulated current in the presence of filtered
fluctuations, are summarized in Fig. 2. Figures 2(Ai) and 2(Aii)
plot the amplitude of the firing-rate response as a function of
the modulation frequency ω/2π for the suprathreshold (i) and
subthreshold (ii) examples from Fig. 1. It is again striking
how closely the white-noise [green lines, Eqs. (32) and (33)]
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FIG. 2. (Color online) Firing-rate response of the EIF model subject to filtered noise. (Ai) Rate-modulation amplitude for the suprathreshold
firing-regime example (i) from Fig. 1 showing the limits of white noise [green, Eqs. (32) and (33)] and frozen noise [red, Eq. (38)], and the
fast-noise expansion R̂0 + κ2R̂2 [black, Eqs. (35) and (36) for R̂2] for τs = 2 ms compared to simulations (symbols). The inset shows three
values of the integrand φ(s)R̂det in Eq. (38) with s corresponding to E = −55, − 54, − 53 mV (magenta, blue and indigo lines) for the
Gaussians in Figs. 1(A) (Bi) and (Ci) Rate response at 5 Hz modulation for a range of filtering κ2 = τs/τv on logarithmic and linear scales
for the suprathreshold case with the fast-noise expansion compared to simulations. (Aii–Cii) Same data but for the subthreshold example from
Fig. 1. The modulation strength was Ê = 1 mV with all other parameters provided in the caption to Fig. 1.
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and frozen-noise [red lines, Eq. (38)] limits agree. At low
modulation frequencies (<10 Hz) this similarity is a conse-
quence of the close agreement for the steady state because the
firing-rate response at low frequencies is proportional to the
gradient of the steady-state rate dR/dE. At high frequencies
(>100 Hz) the amplitude of the rate response is determined by
the EIF spike dynamics [9] and converges to R/iωτv$T , per
unit modulation amplitude, regardless of the fluctuation time
scale. This result can be rederived here from Eqs. (27) and (28),
which yields ˆ{1} = −ε̂∂v{1}/iω in the large ω limit, and then
using the large v results R)f {1} and R̂)f ˆ{1} from Eqs. (11)
and (28). However, this result is less obvious when the case of
frozen noise Eq. (38) is considered, which is equivalent to a
heterogeneous network of deterministic neurons. The response
of deterministic neurons to modulations Eq. (39) features
divergences at multiples of the inverse period [see insets in
Figs. 2(Ai)–(ii)], and hence the resulting smooth decay of
1/iω, as argued from the Fokker-Planck equation, implies a
cancellation of these divergences at multiple frequencies. The
results of the fast-noise expansion R̂0 + κ2R̂2 [black lines,
Eqs. (35) and (36) for R̂2] are compared with simulations
for filtered fluctuations (τs = 2 ms) corresponding to fast
AMPA synapses and shown to provide a good account for both
suprathreshold and subthreshold examples. The quality of the
fast-noise expansion is further examined in Figs. 2(B)–(Ci–ii)
for a fixed modulation frequency of 5 Hz (chosen to be near
that of theta rhythms seen in cortical and subcortical structures)
over a range of filtering time constants κ2 = τs/τv showing a
linear response at small τs as expected by this second-order
expansion. For the examples presented here, the variation in
the modulated amplitude as a function of filtering time constant
for a range spanning four orders of magnitude was small—less
than 15%.

V. DISCUSSION

We have analyzed the firing dynamics of the EIF model
subject to white, fast, or frozen fluctuations. Our results
generalize previous analyses of the effects of filtered inputs on
the steady-state rate of LIF [2,5,6] and QIF [8] neurons, and we
extended the methodology further to examine the firing-rate
dynamics under weak sinusoidally modulated afferent drive. A
perturbative solution of the 1 + 2 dimensional Fokker-Planck
equation allowed for the steady-state and firing-rate response
to be derived analytically in a power series of the ratio of
filtering to membrane time constants κ =

√
τs/τv , with the

expansion to second-order agreeing well with simulations at
the physiologically relevant time scale of excitatory AMPA
synapses τs = 2 ms.

However, taking a more broad view, a clear result of the
study was the insensitivity of the firing rate to the time scale
of filtering, if the amplitude of the fluctuations was varied so
that the voltage distribution was more-or-less constant. The
result is surprising given that the states of the populations
are very different when subject to fast or frozen noise. For
fast noise the population comprises homogeneous neurons
firing stochastically, whereas for frozen noise the population
is heterogeneous, featuring some silent neurons and others
firing regularly with a distribution of fixed rates. That the low
frequency of the firing-rate response was relatively similar

(less than 15% difference here between white and frozen
cases for both subthreshold and suprathreshold regimes) is
a consequence of the relation between the low-frequency
rate response and the gradient of the steady-state rate versus
resting potential curve. More remarkable is the agreement at
high-frequency modulation. Though it has been shown from an
analysis of the Fokker-Planck equation that any colored noise
will lead to the same high-frequency asymptotics of 1/iω for
the EIF [9], when taken to the extreme of frozen fluctuations
this result asserts a complex cancellation of the divergent peaks
in the response of the deterministic neurons comprising the
population. It would be interesting to examine the nature of
the cancellation of divergences for heterogeneous populations
with non-Gaussian distributions of frozen noise for which
asymptotics from a Fokker-Planck equation cannot be derived,
but a result in terms of a distribution over deterministic neurons
Eq. (38) can be derived.

Which neglected biophysical properties would be likely
to disturb this similarity between homogeneous stochastic
populations and heterogeneous deterministic populations?
One feature of juvenile neocortical networks is short-term
synaptic dynamics [21] such as depression of facilitation.
These dynamics are sensitive to the temporal correlations
in spike trains and, in the context of a recurrent network,
would distinguish between fibers activated at the same typical
rates but with different coefficients of variation, such as due
to stochastic or deterministic presynaptic neurons. A second,
intrinsic neuronal property, that has the potential to break the
similarity between fast and frozen fluctuations is the effect of
voltage-gated currents. For very slow voltage-gated currents it
can be expected that, again, the voltage distribution is the key
determinant of the level of activation [22]. However, rapidly ac-
tivating currents such as the fast [23] or slower [24,25] compo-
nents of the inactivation of the sodium spike-generating current
are sensitive to the recent history of voltage dynamics near the
action-potential threshold and have been shown to significantly
impact the response properties of neurons in vivo [26].
It can be noted that the theoretical framework developed here
provides a basis for future studies that aim to examine how EIF
neurons with sodium-current inactivation [10,27] interact with
filtered fluctuations at the level of populations and networks.

APPENDIX: THRESHOLD INTEGRATION

The linearity of the Fokker-Planck equation allows for
an efficient numerical scheme to be employed to obtain the
steady-state and linear-response solutions [13]. The method
works by resolving the Fokker-Planck equation into the
continuity and flux equations: two coupled first-order linear
differential equations for the flux and density, respectively.
These pairs of equations feature boundary conditions at the
threshold and reset that are proportional to an a priori unknown
ratelike quantity and may also feature inhomogeneous terms.
The “trick” of the method is to separate the solution of these
two equations into two additional pairs, one pair proportional
to the unknown ratelike quantity that will account for the
boundary conditions and one pair that accounts for the
inhomogeneous terms. These two pairs of solutions are each
obtained numerically by integrating backward from a threshold
Vth to a lower bound Vlb. The resulting two pairs of solutions
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are then linearly combined in such a way so as to ensure that
probability is normalized, thereby fixing the unknown rate and
solving the Fokker-Planck equation. The threshold and lower
bound are chosen such that their values do not materially affect
the final answer; the values used here were Vth = 0 mV and
Vlb = −100 mV. The equations to be solved for each of the
cases treated in this paper are first specified with a convenient
numerical scheme provided at the end of the Appendix.

1. Zeroth-order steady-state solution

In this case the differential Eq. (14) can be solved
analytically and the resulting integrals evaluated numerically;
however, Threshold Integration provides a more direct route.
There is no inhomogeneous term in (14), and so the substitution
Q0 = R0Q

R
0 is sufficient. The resulting differential equation

for QR
0 contains no unknowns and can be integrated backward

from vth down to the lower bound vlb. The unknown rate
R0 is then extracted by the normalization condition on the
probability density Q0, so that R0 = 1/

∫ vth

vlb
dvQR

0 .

2. Second-order steady-state solution

Equation (17) for {s2}2 features a boundary term propor-
tional to R2 and two inhomogeneous terms. The solution is
resolved into two parts {s2}2 = R2{s2}R2 + {s2}I2, where {s2}R2
and {s2}I2 satisfy

(f −∂v){s2}R2 = θ (v−vre), (A1)

(f −∂v){s2}I2 = (1−∂vf )∂vQ0 − R0

δT

δ(v−vre), (A2)

which are solved numerically by integrating from threshold to
the lower bound vlb. Because

∫
dv{s2} = 1 it must be that∫ vth

vlb
dv{s2}2 = 0, and so R2 = −

∫ vth

vlb
dv{s2}I2/

∫ vth

vlb
dv{s2}R2 ,

which in turn gives the combination of {s2}R2 and {s2}I2 required
to form {s2}2.

3. Zeroth-order linear-response solution

The pair of Eqs. (32) and (33) for Q̂0 and Ĵ0 feature
a boundary term proportional to the unknown R̂0 and an
inhomogeneous term ε̂Q0. Separating the solutions into rate
and inhomogeneous terms Q̂0 = R̂0Q̂

R
0 + Q̂I

0 and similarly
for Ĵ0 gives two pairs of simultaneous differential equations
to be solved by integrating down to the lower bound from
threshold:

−∂vĴ
R
0 = iωQ̂R

0 − δ(v − vre), (A3)

(f − ∂v)Q̂R
0 = Ĵ R

0 , (A4)

and

−∂vĴ
I
0 = iωQ̂I

0, (A5)

(f − ∂v)Q̂I
0 = Ĵ I

0 − ε̂Q0. (A6)

The modulated flux Ĵ0 = R̂0Ĵ
R
0 + Ĵ I

0 at sufficiently low
voltages (at the lower bound, for example) must vanish, and
hence R̂0 = −Ĵ I

0 (vlb)/Ĵ R
0 (vlb).

4. Second-order linear-response solution

Equations (35) and (36) can be solved using the same
method used for the zeroth-order case by introducing ˆ{s2}2 =
R̂2

ˆ{s2}
R

2 + ˆ{s2}
I

2 and Ĵ2 = R̂2Ĵ
R
2 + Ĵ I

2 , which satisfy the two
equation pairs

−∂vĴ
R
2 = iω ˆ{s2}

R

2 − δ(v − vre), (A7)

(f − ∂v) ˆ{s2}
R

2 = Ĵ R
2 , (A8)

and

−∂vĴ
I
2 = iω ˆ{s2}

I

2 − iω∂2
v Q̂0, (A9)

(f − ∂v) ˆ{s2}
I

2 = Ĵ I
2 − ε̂{s2}2 + (∂vQ̂0)(1 − ∂vf − iω)

− R̂0

δT

δ(v − vre). (A10)

The modulated rate at second order is given by the ratio
R̂2 = −Ĵ I

2 (vlb)/Ĵ R
2 (vlb).

5. Numerical implementation

Because of the exponentially large values of the function
f (v) at high voltages it is more convenient to use a slightly
modified scheme rather than the standard Euler method for the
integration of equations of the form

−(∂vX − f X) = H (v). (A11)

By partially integrating this equation between two voltage
steps, the following form can be derived:

Xk−1 = akXk + $bkHk

where

ak = e−$fk and bk = 1 − e−$fk

$fk

. (A12)

The voltage integration step is $, and the k = 1 . . . n super-
script implies evaluation at a particular voltage v = vk with
vn = vth at threshold and v1 = vlb at the lower bound. The
boundary conditions at threshold for scaled fluxlike quantities
is JR(vth) = 1 and J I (vth) = 0, whereas the condition at
threshold for quantities X that obey equations like (A12) are
X(vth) ) H (vth)/f (vth) because f X + ∂vX.
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