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I. Threshold Integration for shot-noise processes with a boundary

Rate-based quantities for additive, exponentially distributed shot-noise processes can be
derived using Laplace transforms. However, voltage-dependent quantities like the proba-
bility density are less conveniently derived. Furthermore, detailed models of neuronal inte-
gration which include reversal potentials or non-linear spike mechanisms are not amenable
to a Laplace transform approach, even for rate-based quantities. The Threshold Integra-
tion method recently developed for non-linear neurons receiving Gaussian white noise
[1, 2] provides a simple numerical scheme for integrating threshold-reset systems and can
be readily adapted to the case of shot noise. The steady state for additive noise treated
in this paper will be used as an example. The continuity and synaptic flux equations are

∂vJ = −∂tP + r(t) (δ(v − vre) − δ(v − vth)) (1)

∂vJe = −Je/ae + ReP − r(t)δ(v−vth) (2)

∂vJi = −Ji/ai + RiP + Ji(vlb)δ(v−vlb) (3)

where P =τ(Je + Ji − J)/v. The last term in the flux equation for Ji restricts the voltage
to be between a lower bound vlb and threshold vth for numerical convenience (if vlb is set
sufficiently low it has a negligible effect on the results). In the steady state the system
of equations (1,2,3) reduces to three coupled first-order differential equations with two
inhomogeneous terms: one proportional to r0 and another to Ji0(vlb) both of which are a

priori unknown. Resolving the solution into two components proportional to these terms
J0 =r0f0+|Ji0(vlb)|g0 and similarly for Je0, Ji0 yields two equation sets. For cases where
vre >0 the first set

∂vf0 = δ(v − vre)

∂vfe0 = −fe0/ae + τRe0(fe0 + fi0 − f0)/v

∂vfi0 = −fi0/ai + τRi0(fe0 + fi0 − f0)/v

is integrated backwards from vth → 0+ with initial conditions f0(vth) = fe0(vth) = 1 and
fi0 =0. The second set

∂vg0 = 0

∂vge0 = −ge0/ae + τRe0(ge0 + gi0 − g0)/v

∂vgi0 = −gi0/ai + τRi0(ge0 + gi0 − g0)/v

is integrated forwards from vlb → 0− with initial conditions g0(vlb) = ge0(vlb) = 0 and
gi0 =−1. The functions are matched on either side of v=0 by enforcing Je0(0−) = Je0(0+)

|Ji0(vlb)|ge0(0−) = r0fe0(0+) (4)
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Figure 1: Generalized amplitude distributions: steady-state firing rate as a function of the
synaptic rate. The inset shows the three example distributions (one is a single exponential

α
(2)
e =0 for comparison). For each distribution the parameters (marked on the figure) have

been chosen so that the average synaptic amplitude is 1mV, leading (in this case) to similar
steady-state firing-rate profiles despite the different underlying amplitude distributions.
Other parameters were τ =20ms, vre =5mV and vth =10mV.

which is rearranged to yield |Ji0(vlb)|/r0 = fe0(0+)/ge0(0−). Normalization of the proba-
bility density P0 =τ(Je0+Ji0−J0)/v is then used to extract r0

1

τr0
=

∫ vth

vlb

dv

v

(
(fe0 + fi0 − f0) +

|Ji0(vlb)|
r0

(ge0 + gi0 − g0)

)
(5)

and consequently Ji0(vlb) to give the steady-state probability density and fluxes. It is
straightforward to generalize the above for cases where vre < 0.

II. Generalized amplitude distributions

The framework developed for shot-noise processes with a single exponential amplitude
distribution generalizes readily to distributions that can be written as sums of exponentials

A(a) =
∑

m

α(m) exp(−a/a(m))/a(m) (6)

for Ae(a) or Ai(a). The prefactors α(m) may be positive or negative as long as the dis-
tribution is always positive and the normalization is chosen so that

∑
m α(m) = 1. A

full description of the analytical solution for the generalized case, which can be obtained
straightforwardly using the Laplace-transform approach, is beyond the scope of this Let-
ter. However, we provide (using the numerical Threshold Integration method) an example
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case: the two-component excitatory process. The equations to be solved are

∂vJ0 = (r
(1)
0 + r

(2)
0 ) (δ(v − vre) − δ(v − vth)) (7)

∂vJ
(1)
e0 + J

(1)
e0 /a(1)

e = R
(1)
e0 P0 − r

(1)
0 δ(v − vth) (8)

∂vJ
(2)
e0 + J

(2)
e0 /a(2)

e = R
(2)
e0 P0 − r

(2)
0 δ(v − vth) (9)

J0 = J
(1)
e0 + J

(2)
e0 − vP0/τ (10)

where R
(1,2)
e0 = α

(1,2)
e Re0 where Re0 is the total excitatory synaptic rate and r

(1)
0 and r

(2)
0

are the contributions of each component to the total steady-state rate r0 = r
(1)
0 + r

(2)
0 .

Note that the signs of r
(1,2)
0 depend on those of α

(1,2)
e . The solutions of equations (7-10)

are linear in each component’s contribution to the firing rate and so must be of the form

J0(r
(1)
0 , r

(2)
0 ) = r

(1)
0 J0(1, 0) + r

(2)
0 J0(0, 1) and similarly for J

(1)
e0 , J

(2)
e0 and P0. The solutions

for the case (1, 0) are found using the Threshold Integration method, integrating from vth

backwards to 0, and similarly for the case (0, 1). The unknown rate components can then

be found from the normalization and zero-flux requirement at the origin J
(1)
e |v=0 = 0 (or

equivalently J
(2)
e |v=0 = 0 via Eq. 7)

1 = r
(1)
0

∫ vth

0
P0(1, 0)dv + r

(2)
0

∫ vth

0
P0(0, 1)dv (11)

0 = r
(1)
0 J (1)

e (1, 0)|v=0 + r
(2)
0 J (1)

e (0, 1)|v=0 = 0 (12)

where it is assumed that a case vre > 0 is being considered. Example solutions for the
steady-state rate for two-component distributions are shown in figure 1.

III. Spike-train spectrum for a neuron driven by synaptic shot noise

The first-passage-time density for two-sided additive shot noise has recently been derived
in the mathematics literature [3]. The closely related spike-train spectrum (STS) will now
be derived here using the framework developed for the firing-rate response. The STS is
the Fourier transform of the autocorrelation C(T ) of the spike train S(t) =

∑
k δ(t− tk)

where {tk} are the spike times of the neuron:

C(T ) = 〈S(t)S(t + T )〉 = r0 (δ(T ) + ̺(T )) (13)

and where ̺(t) is the spike rate at time t given a spike at t = 0. Its Fourier transform is
therefore Ĉ(ω) = r0 (1 + 2ℜ ˆ̺(ω)). The continuity equation for this case is

∂P

∂t
+

∂J

∂v
=̺(t) (δ(v−vre)−δ(v−vth))+δ(t)δ(v−vre) (14)

and the excitatory flux equation is ∂vJe +Je/ae = ReP − ̺(t)δ(v − vth). The inhibitory
flux equation and total flux J = Je +Ji−vP/τ are unchanged from those given in the
paper. Fourier transforms in time and a bilateral Laplace transforms in voltage φ̃(s, ω) =∫ ∞
−∞ dte−iωt

∫ ∞
−∞ dvesvφ(v, t) are performed on these equations and substitution for the

transformed fluxes yields an equation for the transformed density P̃

dP̃

ds
=

(
aeτRe0

1 − aes
+

aiτRi0

1 − ais
− iωτ

s

)
P̃ +

esvreτ

s
− τ ˆ̺

s

(
esvth

1 − aes
− esvre

)
. (15)
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Figure 2: (A) Spike-train spectrum and (B) first-passage-time density [3] for a neuron
receiving synaptic shot noise. The color scheme is the same as that used in the paper with
the diffusion approximation in black.

From the initial conditions P̃ (s = 0, ω) = πδ(ω) + 1/iω and hence P̃ (s, ω)−1/iω → 0 in
the limit s→ 0 (for non zero frequency). With this in mind, equation (15) is solved for
P̃ (s, ω)−1/iω and integrated from 0 to 1/ae so that terms featuring P̃ vanish. After some
rearranging, the Fourier transform of the spike-triggered rate can be written

ˆ̺(ω) =

∫ 1/ae

0 dssiωτ d
ds

[
1

Z0(s)
esvre

]

∫ 1/ae

0 dssiωτ d
ds

[
1

Z0(s)

(
esv

th

1−aes − esvre

)] (16)

for ω 6= 0 where additionally ˆ̺(ω=0)=r0πδ(ω). It should be noted that this compact form
involves a final partial-integration step for the integral in the denominator that is valid
only for the biophysically interesting case where Re0τ >1. The spike-train spectra for cases
i, ii and iii treated in the paper are plotted in figure 2A. The result (16) is closely related
to the Fourier transform of the first-passage-time density f(t) [3] via f̂ = ˆ̺/(1+ ˆ̺). The
numerical inverse-transforms for the first-passage-time density are plotted in figure 2B. It
is worth drawing attention to the initial value of the first-passage-time density (at t=0)
for shot-noise synaptic drive. This can be obtained directly by considering the fraction of
initial excitatory jumps across threshold from reset, so that f(0) = Re0e

−(vth−vre)/ae (see
arrow in 2B for case i which has large excitatory amplitudes). This finite value is distinct
from the diffusion-approximation prediction for which f(0)=0.

IV. Numerical evaluation of shot-noise integrals at high frequency

Many shot-noise quantities consist of the ratio of two integrals If/Ig of form

If =

∫ 1/ae

0
dssiωτ (1 − aes)

Re0τ (1 − ais)
Ri0τf(s). (17)
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The presynaptic rate Re0τ can be of-the-order-of 102 or higher for biophysically reasonable
parameter ranges, concentrating the mass of the integrand near s = 0. However, when
wτ ≫ 1 the integrand becomes increasingly oscillatory as s→ 0. Together, these features
make integrals of the form (17) rather awkward to evaluate numerically at high frequencies.
One method is to identify the saddle point of the first three terms in the integrand (common
to both If and Ig), rotate the integration variable in the complex plane so that the
numerical integration passes through this saddle point and include a divisive factor in
the numerator and denominator integrals evaluated at the saddle point. To this end, the
substitution s=exp(−x)/ae is made

If =
1

a1+iωτ
e

∫ ∞

0
dxe−x(1+iωτ)(1 − e−x)Re0τ (1 − ae−x)Ri0τf(e−x/ae) (18)

where a=ai/ae. The saddle point is found by extremizing Ψ(x) where

Ψ(x) = x(1 + iωτ) − Re0τ log(1 − e−x) − Ri0τ log(1 − ae−x). (19)

which leads to a quadratic equation for ex. The root x=z∗= |z|∗eiθ∗ which has a negative
imaginary part is chosen. It is convenient to introduce the rotation φ∗=eiθ∗ and continue
the integral into the complex plane x→rφ∗ so that the ratio of integrals becomes

If

Ig
=

∫ ∞
0 dre−∆Ψ(r)f

(
e−rφ∗/ae

)

∫ ∞
0 dre−∆Ψ(r)g

(
e−rφ∗/ae

) (20)

where ∆Ψ(r) = Ψ(rφ∗) − Ψ(z∗). Integrals of the form
∫ ∞
0 dre−∆Ψ(r)f

(
e−rφ∗/ae

)
can be

comfortably evaluated numerically up to frequencies of at least 106Hz.

V. Diffusion approximation solved using Laplace transforms

The firing-rate response to modulated current [4] and variance [4, 5], as well as the spike-
train spectrum [6] have been derived previously for the diffusion approximation in terms of
hypergeometric functions. To provide convenient integral representations of these results
the method of bilateral Laplace transforms is also applied to the diffusion approximation.
For this case the voltage dynamics and flux equations are

τ
dv

dt
= µ − v + σ

√
2τξ(t) and τJ = (µ − v)P − σ2 dP

dv
(21)

with the continuity equation ∂tP +∂vJ = r(t) (δ(v−vre)−δ(v−vth)) identical to the shot-
noise case. In the steady state a bilateral Laplace transform of the flux and continuity
equations yields the following for the transformed density P̃0

dP̃0

ds
=

(
µ0 + sσ2

0

)
P̃0 −

τr0

s
(esvth − esvre) . (22)

This can be solved for P̃0 and integrated between from s→∞ to yield

P̃0 = τr0e
µ0s+σ2

0
s2/2

∫ ∞

s

dx

x
e−µ0x−σ2

0
x2/2 (exvth − exvre) (23)
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which for s=0 gives the steady state rate as

1

r0τ
=

∫ ∞

0

dy

y
e−y2/2 (eyyth − eyyre) (24)

where yth =(vth−µ0)/σ0 and analogously for yre in agreement with reference [4]. The spike-
train spectrum and Fourier-transform of the first-passage-time density can be derived using
exactly the same method used for shot noise (see above). Defining an integral

Ath =

∫ ∞

0
dyyiωτ d

dy

(
e−y2/2eyyth

)
(25)

and similarly for the reset vre the Fourier transforms of the spike-triggered rate ˆ̺ (required
for the spike-train spectrum defined in Eq. 13) and the first-passage-time density can be
expressed simply as

ˆ̺ = Are/(Ath − Are) and f̂ = Are/Ath (26)

which are integral representations of the results derived previously in terms of Cylinder
functions [6].

Firing-rate response for the diffusion approximation. The firing-rate response to modu-
lated current µ = µ0+µ1e

iωτ or variance σ2 = σ2
0 +σ2

1e
iωτ can also be derived straightfor-

wardly using Laplace transforms. The modulated flux is either

τJ1 = P1(µ0 − v) − σ2
0

dP1

dv
+ P0µ1 or τJ1 = P1(µ0 − v) − σ2

0

dP1

dv
− σ2

1

dP0

dv
(27)

for these two cases, respectively. Laplace transforming either of these equations and
combining it with the transformed modulated continuity equation, and solving in the
same way as for the shot-noise case allows the modulations to be expressed in terms of
ratios of integrals of the form

Bm =

∫ ∞

0

dy

y
ym+iωτe−y2/2 (eyyth − eyyre) (28)

so that the rate response for current rµ and variance can be written rσ2

rµ =
r0

1 + iωτ

µ1

σ0

B1

B0
and rσ2 =

r0

2 + iωτ

σ2
1

σ2
0

B2

B0
(29)

which are integral representations of results derived previously in terms of hypergeometric
functions [4, 5], though see the equation set A.19 of reference [4] for related integral
representations. To compare with the shot-noise case the modulation of a presynaptic
excitatory or inhibitory rate Rκ1 (with κ = e, i) is given by rκ = rµ+rσ2 with µ1 = Rκ1τaκ

and σ2
1 = Rκ1τa2

κ.

Numerical evaluation of diffusion integrals at high frequencies. For diffusion-approximation
quantities, ratios of integrals If/Ig of form

If =

∫ ∞

0
dyyiωτe−y2/2f(y) = (ωτ)

1+iωτ

2

∫ ∞

0
dxe−ωτ(x2/2−i log(x))f(x

√
ωτ) (30)

need to be evaluated. Extremizing the argument of the exponential Ψ = ωτ(x2/2−i log(x))
in the second form of the integral gives the saddle point at z∗ = (1 + i)/

√
2. Like for the
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shot-noise case, the integral is deformed onto the complex plane to run through the saddle
point, from the origin to the point z = 0+i/

√
2 and then from that point to z = ∞+i/

√
2.

Hence the ratio of integrals can be written

If

Ig
=

i
∫ ∞
0 dae−∆Ψ(ia)f(a

√
iωτ) +

∫ ∞
0 dbe−∆Ψ(b+i/

√
2)f((b + i/

√
2)
√

ωτ)

i
∫ ∞
0 dae−∆Ψ(ia)g(a

√
iωτ) +

∫ ∞
0 dbe−∆Ψ(b+i/

√
2)g((b + i/

√
2)
√

ωτ)
(31)

where ∆Ψ(x)=Ψ(x) − Ψ(z∗).
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