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Abstract. The behaviour of the single-species reaction process A + A→ O is examined near
an impenetrable boundary, representing the flask containing the reactants. Two types of dynamics
are considered for the reactants: diffusive and ballistic propagation. It is shown that the effect of
the boundary is quite different in both cases: reaction-diffusion leads to a density excess, whereas
ballistic annihilation exhibits a density deficit, and in both cases the effect is not localized at the
boundary but penetrates into the system. The field-theoretic renormalization group (RG) is used to
obtain the universal properties of the density excess in two dimensions and below for the reaction-
diffusion system. In one dimension the excess decays with the same exponent as the bulk and
is found by an exact solution. In two dimensions the excess is marginally less relevant than the
bulk decay and the density profile is again found exactly for late times from the RG-improved field
theory. The results obtained for the diffusive case are relevant for Mg2+ or Cd2+ doping in the
TMMC crystal’s exciton coalescence process and also imply a surprising result for the dynamic
magnetization in the critical one-dimensional Ising model with a fixed spin. For the case of ballistic
reactants, a model is introduced and solved exactly in one dimension. The density-deficit profile
is obtained, as is the density of left- and right-moving reactants near the impenetrable boundary.

Introduction

Systems of reacting and coalescing particles, whether chemical or more exotic, are excellent
examples of statistical systems far from equilibrium. Such processes are widespread
throughout nature and cover a broad range of physical phenomena. Though the microscopic
details of specific reaction systems may vary enormously, it is often the case that the global
behaviour of such processes is determined by only a few of its properties: the number of
particles that interact locally in a single reaction and the dynamics of a single reactants’ motion.
Many of the simple reaction schemes have been extensively studied, for example the first-order
reaction processes A + A→ O or A + A→ A. Also, much is known of the more complicated
two-species process A + B→ O where the formation of reaction fronts [1] and spontaneous
segregation of species [2] can occur. These reaction processes have been analysed for the case
of reactants that diffuse and that also have ballistic motion. The former is the appropriate
choice for systems where the mean-free path is much less than the inter-reactant distance, and
the latter is appropriate for the contrary case, for example gas-phase reactions. Of course,
given that the inter-reactant distance is generally decreasing as the reaction process continues
it can occur that in some physical systems a crossover will exist from ballistic to diffusive
behaviour [3].

The majority of studies have considered reaction processes that occur in a translationally
invariant system, for example in systems with periodic boundary conditions or of infinite
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extent. In this paper we analyse the A + A→ O reaction near a fixed, impenetrable boundary.
Such a boundary represents the vessel containing the reactants, though as will be discussed, it
can also represent other phenomena in esoteric reaction systems.

In section 1 we describe the case of diffusive reactants near a boundary and show that a
density excessis formed which extends into the system. A concise account of these results has
been presented elsewhere [4], but without a detailed description of the method. The late-time
forms of this density excess are found exactly in one and two dimensions and we discuss
a surprising implication for the dynamic magnetization of the critical one-dimensional Ising
model. As a counter-point to the diffusive case, in section 2 we consider the case of ballistic
annihilation near an impenetrable boundary and show that it has the opposite effect: adensity
deficit is formed at the boundary. A model for the ballistic process is introduced and solved
exactly with the density profiles of left and right moving reactants obtained. Finally, we close
with a discussion of the results obtained and open questions.

1. Reaction-diffusion near a boundary

In this section the effect of an impenetrable boundary on the dynamics of a single-species
reaction process withdiffusive reactants is studied. This universality class comprises the
annihilating random walk A + A→ O, coalescing random walk A + A→ A and any
combination thereof [5]. Though the results below will be explicitly derived for the annihilating
random walk, they are identical for every member of the universality class, albeit with a trivially
altered pre-factor. As well as chemical processes, the dynamics of single-species reactions
systems are exhibited in a broad range of physical phenomena. For example, the annihilating
random walk models the domain coarsening of the one-dimensional critical Ising model [6].
Starting from an initially uncorrelated random state at zero temperature, the Ising system
evolves by Glauber dynamics. The domains increase in size by the process of domain wall
annihilation and an isolated domain wall performs a random walk (in zero applied field). Such
a domain wall can therefore be thought of as a reactant in the single-species A + A→ O
reaction. (A similar mapping holds between the coarsening of the∞-state Potts model and
the A + A→ A system.) A second example is the exciton coalescence reaction A + A→ A
which is seen experimentally in the TMMC crystal [7, 8]. The non-trivial decay exponent
predicted theoretically for the laser-induced electronic excitations is seen over many orders of
magnitude. The boundary conditions to be studied in this section are realized in the TMMC
crystal with doping by Mg2+ and Cd2+ ions that act as perfect reflectors for the annihilating
excitons [9].

We first review the relevant results for the reaction process in a translationally invariant
unbounded system, which will be referred to as thebulk case. Following that the model will
be defined and the basic results stated. A detailed description of the method will then be
given. The dynamics will be written in terms of a master equation and then mapped to a field-
theoretic representation. The universal properties of the density excess will be obtained and
the asymptotically exact density profile found in two dimensions. Motivated by the mapping
to the Ising system, a model will introduced and solved exactly in one dimension. The section
is closed with a summary of results obtained.

Summary of known results for the unbounded system

A wealth of research exists on the single-species A + A→ O process in unbounded systems
[2, 10–15]. There are many realizations of the dynamics, but the resulting late-time behaviours
show a strong degree of universality and are independent of the details of particular models.
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The annihilating random walk describes the process whereby diffusing A particles, moving in
a d-dimensional space, may react pairwise on contact, at a rateλ. The principal quantity of
interest is the decay of the density% of reactants as a function of timet . A starting point in
the analysis of such systems is the mean-field approach. This corresponds to writing a self-
consistent equation for the average reactant density%, thereby ignoring all spatial correlations:

∂%

∂t
= D∇2% − 2λ%2 with the late time result % ' 1

2λt
(1)

where we have introduced the diffusion constantD. Neglecting the effect of correlations is
equivalent to assuming that the reactants remain well mixed throughout the reaction process.
However, due to the statistics of random walks in two dimensions and below, simple diffusion
of particles itself is not sufficiently fast to maintain a well-mixed state. Reactants that are close
together react fast leaving reactants that are more widely separated, i.e. anti-correlated in
space. For this reason, the mean-field result (1) loses its validity below two dimensions. Also,
in these lower spatial dimensions the fact that random walks are recurrent means that reactants
come into contact many times, each time providing an opportunity for a reaction to take place.
This implies that even a small reaction rateλ does not limit the global rate of reaction. In
two dimensions and below the reaction becomesdiffusion limitedand is independent of the
parameterλ. The correct forms for the density in two dimensions and below are given in
table 1 at the end of this section.

Reactions near a boundary—new results

We now define the model that will be analysed throughout the remainder of this section.
The dynamics of the A particles are the same as for the unbounded case except that now the
geometry is restricted by the imposition of a hyperplane boundary, confining all particles to
the positive half-volume. To be specific, the model is defined on a hypercubic,d-dimensional
lattice which for convenience has a lattice spacing of unity. Thisd-dimensional lattice is
infinite in d − 1 transverse dimensions and semi-infinite, sites 1, 2, . . . ,∞ in what will be
called thez direction. Initially, the lattice is filled with an average density%0 of A particles
that have two components to their behaviour, diffusive motion and mutual annihilation. They
can diffuse randomly throughout the lattice by hopping at a rateD to any neighbouring site, as
long as the restrictionz > 1 is maintained. The diffusion is independent for each particle and
hence multiple occupancy of a lattice site is allowed, leading to bosonic statistics. However,
if there aren > 2 particles on a site, a reaction can occur there with a rateλn(n− 1) reducing
n by 2.

In the same way as for the bulk case, the dynamics of the model can be approximated
by a mean-field description of the same form as equation (1) but with the added restriction of
zero current at the boundary. This amounts to enforcing a vanishing density gradient atz = 0
which is a restriction compatible with the unbounded solution. Hence, the mean-field equation
asserts that the boundary hasno effect. Nevertheless, as was shown above the mean field
cannot be relied upon in two dimensions and below because of the importance of correlations.
In fact, even a simple argument shows that adensity excessdevelops near the boundary in low
dimensions. Consider the dynamics of the model in one dimension, up to a timet and far from
the influence of the wall. Since random walks are recurrent in these dimensions, in the bulk
most particles within a diffusion lengthlb ∼

√
2Dt will have interacted and annihilated. This

leads to a density in the bulk of the system of%b ' l−1
b = cb/

√
t . Close to the wall, within a

distance of the order of
√
Dt , the diffusion length is smaller. The density near the wall is then

%w ' l−1
w = cw/

√
t , with cw > cb. As cw = cw(z2/Dt) the argument implies that there is a

density excess near the boundary which propagates into the system diffusively.
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This is a qualitative argument, however, we will show analytically that in two dimensions
and below this is indeed the case: the reactant density has the form of a constant background
density%B given by the well known unbounded results in table 1, and a fluctuation-induced
density excess%E

%(z, t) = %B(t) + %E(z, t). (2)

As will be demonstrated, the density excess has the universal dimension-dependent form

%E(z, t) = 1

(8πDt)d/2
fd

(
z2

2Dt

)
. (3)

In the following two sections we use both the field-theoretic renormalization group (RG) and
an exact solution to determine the asymptotic forms of the scaling functionsf2 andf1 for two
and one dimensions respectively. A reasonable amount of technical details are given, but all
the important results derived can be found in the summary at the end of this section.

1.1. Two dimensions and below

In the following we will examine the late-time scaling behaviour of the lattice model described
above. First, the dynamics will be written as a bosonic master equation and mapped to a
continuum field theory via the coherent-state formalism. The theory is then regularized and
the RG applied to obtain the universal properties and non-perturbative results valid for late
time in dimensions two and below. The method is standard [15–17], but is technically more
complicated than the unbounded case [5, 14] due to the lack of translational invariance that
necessitates calculations in real space.

The field theory

The first step in the field-theoretic calculation is to write the dynamics of the model in terms
of amaster equation. This describes the flow of probability between microstates of the system
defined by the set of occupation variables{ni} whereni is the number of particles on sitei.
Due to the bosonic statistics of the A particles it is convenient to write the master equation in a
second-quantized form. Each configuration,{ni} is assigned a vector in a bosonic Fock space
|{ni}〉, with |0〉 denoting the no-particle state. Usingak anda†

k as the bosonic operators for site
k the state ket of the system|P(t)〉 is written

|P(t)〉 =
∑
{n}
P({nj } : t)

∏
i

(a
†
i )
ni |0〉.

HereP({nj } : t) is the probability of being in a particular microstate{nj } at a timet , the sum
is over all microstates, and the product is over all lattice sites. The master equation for the
model can now be written in the form∂t |P 〉 = −H|P 〉where the evolution operatorH is given
by

H =
∑
i

[
D
∑
j

a
†
i (ai − aj )− λ(1− (a†

i )
2)a2

i

]
.

The sumi is over all lattice sites, and the sumj is over all of sitei’s neighbours, with the
condition that both sums are restricted to the half-space. We now introduce two objects, the
projection state〈| = 〈|a† and the initial state|%0〉 with average particle density%0, that allow
observables such as the density%k(t) to be written

〈| = 〈0|e
∑

j aj and |%0〉 = e%0
∑

j (a
†
j−1)|0〉

%k(t) = 〈|ake−Ht |%0〉
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where the sums are again over all lattice sitesj with z > 0. The field-theoretic representation
is obtained using the coherent-state formalism [18]. The continuum of microstates of the
system are now given by configurations of the field variables{φ0, φ0} which are analogous to
{a, a† − 1}. Observables are written as integrations over the appropriate weighting function
S0(φ0, φ0) which we will call theaction. For example, the density at positionr and timet is
written

%(r, t) =
∫
Dφ0Dφ0φ0(r, t)e

−S0(φ0,φ0) (4)

S0(φ0, φ0) = SD + 2λ
∫ t

0
dt
∫
z>0

ddr φ0φ
2
0 + λ

∫ t

0
dt
∫
z>0

ddr φ
2
0φ

2
0 − %0

∫
z>0

ddr φ0(0). (5)

The diffusion component of the actionSD defines the propagator

G(rf , ri : t) =
∫
Dφ0Dφ0φ0(rf , t)φ0(ri, 0)e

−SD(φ0,φ0)

G(rf , ri : t) = [G(zf − zi : t) +G(zf + zi : t)]
∏
{y}
G(yf − yi : t)

(6)

where we have used the notationr = {z, y1, y2 . . .}, with the set{y} representing the dimensions
parallel to the boundary and the functionG(x : t) is the Gaussian

G(x : t) = 1

(4πDt)1/2
exp

(
− x2

4Dt

)
.

Regularization of the theory

From power counting, it is seen that the upper-critical dimensiondc = 2 of the theory is
unchanged from the bulk case. The theory contains divergences, by virtue of the continuum
limit and to write the density in a calculationally useful form we need to replace all the bare
quantities with renormalized ones and render the theory finite. This is done using dimensional
regularization ind = 2 − ε. In fact the renormalization of the theory is straightforward
as there is no propagator, initial condition or field renormalization: only the reaction rate is
renormalized. Because the propagator is not dressed by the interactions, equation (6) is the full
result showing that the boundary remains effectively reflecting on all scales. In the language
of surface critical phenomena, this corresponds to thespecial transition[19] persisting at
all orders and is different from the behaviour frequently seen in equilibrium surface critical
phenomena [20,21] and in related non-equilibrium systems [22,23].

The bare actionS0 = S+Sct is now rewritten in terms of the renormalized actionS and the
counter-term actionSct . We also introduce the dimensionless interaction parameterg defined
by λ = ZggDµε with µ arbitrary but with dimensions of inverse length. Thus

S = SD + gDµε
[
2
∫ t

0
dt
∫
z>0

ddr φφ2 +
∫ t

0
dt
∫
z>0

ddr φ
2
φ2

]
− %0

∫
z>0

ddr φ

Sct = (Zg − 1)gDµε
[
2
∫ t

0
dt
∫
z>0

ddr φφ2 +
∫ t

0
dt
∫
z>0

ddr φ
2
φ2

]
.

(7)

The diagrammatic representation of the two reaction terms and the counter terms are given in
figure 1(a).

The renormalization constantZg = 1+Z(1)g + · · · can now be calculated up to the one-loop
order. The minimal-subtraction regularization is done perturbatively (in the absence of the
initial conditions) by demanding that calculated quantities at a given order of perturbation
theory are finite. As an example, consider the correlation function

P = 〈φ(c, t)φ(a,0)φ(b, 0)〉 = [P1 + Pct ] + · · · = finite
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2gD

gD

g2(Z -1)gD

(Z -1)gDg

Figure 1. The diagrammatic representations of (a) the interactions and counter terms (with blob)
and (b) the one-loop regularization. The propagator is denoted by a straight line with an arrow
signalling the time direction. In the diagramatic equation (b) P1 andPct are the one-loop andZ(1)g
counter-term contributions, respectively.

where〈. . .〉 denotes an average of the fields over the action (7) without the initial-condition
term. We have used the notationP1 to denote the contribution to this correlation function at
the one-loop level andPct is the appropriate counter-term, see figure 1(b):

P1 = 8g2D2µ2ε
∫ t

0
dt1

∫
z>0

ddr 1

∫ t1

0
dt2

∫
z>0

ddr 2G(c − r1, t − t1)G2(r1− r2, t1− t2)
×G(r2 − a, t2)G(r2 − b, t2)

Pct = −Z(1)g 4gDµε
∫ t

0
dt1

∫
z>0

ddr 1G(c − r1, t − t1)G(r1− a, t1)G(r1− b, t1).

Using the above equations the scheme requires that [Z(1)g − 2DgµεK] is finite, whereK is
defined through

K =
∫ t1

0
dt2

∫
z>0

ddr 2
G(r2 − a, t2)G(r2 − b, t2)
G(r1− a, t1)G(r1− b, t1)G

2(r1− r2, t1− t2).
The singular part ofK can be extracted so that

2DgµεK = Z(1)g =
g

2πε
+ O(ε0).

Hence using the renormalization constantZg = 1 +g/(2πε) the one-loop beta function is

β(g) = g

2π
(g − 2πε) in d = 2− ε. (8)

The fixed point structure is unchanged from the bulk result found in [14]. This is understandable
as physically the renormalization ofλ is connected to the fact that random walks are recurrent
in two dimensions and below: a feature unaffected by the presence of a boundary. With the
theory regularized, it is now possible to proceed with a perturbative calculation of the density
that is valid for early times.

The perturbative density

To calculate the density% at early times, three objects are needed: the tree-level contribution
%(0), the one-loop contribution%(1) and the counter-term%(1)ct

% = %(0) + %(1) + %(1)ct . (9)
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Figure 2. The diagrammatic representations of (a) the tree-level density calculation, (b) the classical
propagator and (c) the perturbative density to the level of one loop, which reading from left to right
are%(0), %(1) and%(1)ct .

All these are calculated using the renormalized action with the initial conditions included

%(r, t) =
∫
DφDφφ(r, t)e−S−Sct

whereS andSct are defined in equation (7). However, as will be justified later, an expansion
is made in the parameter%−1

0 with only the leading term retained. This is equivalent to the
limit of high initial density.

(i) The tree-level contribution%(0). The tree-level density is obtained by the sum of all
diagrams given in figure 2(a) with the sum rewritten to yield an integral equation. The result
is found to be equivalent to the bulk case, as is expected from the mean-field analysis earlier.

%(0) = %0

1 + 2%0gµεDt
= 1

2gµεDt
+ O(%−1

0 ). (10)

Before proceeding to the one-loop calculation, the dressed, tree-level propagator must be
calculated. Following [14] we call this the classical propagatorGC and it is defined through

GC ≡ 〈φ(r1, t1)φ(r2, t2)〉C
with only the tree diagrams included in the average, see figure 2(b). This propagator is evaluated
in real space to give

GC = G(r1− r2, t1− t2)
(

1 + 2%0gµ
εDt2

1 + 2%0gµεDt1

)2

= G(r1− r2, t1− t2)
(
t2

t1

)2

+ O(%−1
0 ). (11)

(ii) The one-loop contribution%(1). Using the classical propagator the one-loop contribution
takes a simple form, see figure 2(c),

%(1) = 4D2µ2εg2
∫ t

0
dt1

∫
z>0

ddr 1

∫ t1

0
dt2

∫
z>0

ddr 2GC(r − r1, t − t1)

×G2
C(r1− r2, t1− t2)(%(0)(t2))2.
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To simplify the notation we introduceGB(r, t), the bulk propagator, defined through

GB(rf , ri : t) = G(zf − zi : t)
∏
{y}
G(yf − yi : t). (12)

In the large%0 limit the one-loop contribution then takes the form

%(1) = 1

t2

∫ t

0
dt1

∫ t1

0
dt2

(
t2

t1

)2

(IB + IE)

with

IB =
∫

ddr1

∫
ddr2 GB(r − r1, t − t1)G2

B(r1− r2, t1− t2)

IE =
∫

ddr1

∫
ddr2 GB(r − r1, t − t1)GB(r1− r2, t1− t2)GB(r1− r ′2, t1− t2).

Note that the half-volume integrations have been exchanged by integrations over the volume.
The integral has been separated into two partsIB and IE corresponding to the bulk and
boundary/excess contributions. The notationr ′2 denotes a set of coordinates in which the
z component is minus that ofr2, but all other coordinates are unchanged. We consider these
two quantitiesIB andIE separately.

Firstly, the bulk integralIB is performed and gives the following one-loop contribution to
the perturbative density

IB =
(

1

2(2πD(t1− t2))1/2
)d

%
(1)
B =

1

(Dt)d/2

(
1

4πε
+

1

16π
(2 log(8π)− 5)

)
+ O(ε).

This result is the same as that found in [14] and provides a uniform background density.
Secondly the excess contributionIE is considered. The integrations over thed − 1

dimensions parallel to the surface yield the result as the integralIB (with the powerd replaced
by d − 1). However, the integration over the direction perpendicular to the wall yields new a
z dependent result. Combining these results one obtains forIE

IE = 1

(8πD)d/2
1

(t1− t2)(d−1)/2(2t − t1− t2)1/2 exp

(
− z2

2D(2t − t1− t2)
)
.

Using this we obtain the contribution to%(1),

%
(1)
E =

1

(Dt)d/2

(
1

8π

)
f2

(
z2

2Dt

)
+ O(ε) (13)

where

f2

(
z2

2Dt

)
=
∫ 1

0
ds
∫ s

0
dq

(q
s

)2 exp
(
− z2

2Dt
1

(2−s−q)
)

(s − q)1/2(2− s − q)1/2 .

We were unable to evaluate this double integral, except atz2/Dt = 0 where the resultf2(0) =
3
2 + π − 3π2/8 was found. However, it has the asymptotic formf2(ξ

2) ∼ exp(−ξ2/2)/ξ3

which is valid forξ � 1.
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The counter-term%(1)ct . As before in terms of the classical propagator this contribution takes
the simple form, see figure 2(c).

%
(1)
ct = −2Z(1)g gµ

εD

∫ t

0
dt1

∫
z>0

ddr 1GC(r − r1, t − t1)(%(0)(t1))2.

In the large%0 limit this is evaluated in a manner similar to%(0) to give%(1)ct = −Z(1)g /2Dtgµε .
All the required perturbative results have now been obtained up to the order of one loop.

These tree-level and one-loop results are combined and rewritten as in equation (2) as the sum
of a spatially independent, background density%B and a spatially dependent, excess density
%E

%B(t) = 1

2gDtµε
+

1

(Dt)d/2

[
1

4πε
+

2 log(8π)− 5

16π

]
− 1

4πεDtµε
+ O(g) (14)

%E(t) = 1

8π(Dt)d/2
f2

(
z2

2Dt

)
+ O(g) (15)

where the results here are correct at the level of one loop. In the next section this perturbative
density will be used to obtain the late-time results by the use of the RG.

The flow equations

A Callan–Symanzik equation for the density can be obtained by noting that any observable
must be independent from the arbitraryµ. Using this fact and dimensional analysis allows one
to write two partial differential equations which can be combined to give[

∂

∂ logz
+ 2

∂

∂ logDt
− d ∂

∂ log%0
+ β(g)

∂

∂g
+ d

]
%̃(z,Dt, %0, g, µ) = 0[

d

d logs
+ d

]
%̃ = 0

(16)

where we have rewritten the sum of partial derivatives as a total derivative with respect to a
scaling variables. Following the notation in [14] we writẽX = X(s) for early-time quantities
andX = X(1) for late-time quantities,

sd %̃ = % z̃ = sz t̃ = s2t %̃0 = s−d%0 g̃ =
∫
β(g) d log(s) (17)

and obtain the exact relation between a density with arguments{z,Dt, %0, g, µ} to a density
with {z̃, Dt̃, %̃0, g̃, µ}

%(z,Dt, %0, g, µ) =
(
Dt̃

Dt

)d/2
%̃(z̃, Dt̃, %̃0, g̃, µ). (18)

Next we will take the limit of larget/t̃ (s → 0). In this case the equation relates a system at
late timest to the density of a system with a large initial density%̃0 measured at early timest̃ .

The late-time density excess below two dimensions

The scaling equation derived above is now used to obtain the late-time density. Using the
notation for early-time quantities defined above, the perturbative excess, equation (15) is
rewritten witht → t̃ etc and inserted into the scaling equation (18). In dimensionsd = 2− ε
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the quantityg̃ tends to its fixed point valuẽg = 2πε as the ratiot/t̃ increases. The spatially
independent and dependent density components become in the late-time limit

%B(t) = 1

(Dt)d/2

[
1

4πε
+

2 log(8π)− 5

16π

]
+ O(ε) (19)

%E(z, t) = 1

8π(Dt)d/2
f2

(
z2

2Dt

)
+ O(ε). (20)

As expected, the bulk value is unchanged from the well known case derived in [14] and given
in table 1. However, also present is an excess%E that decays at the same rate as the bulk case,
i.e. it has a fixed amplitude with respect to%B . It shares the same universality as the bulk
case in as much as it is independent of%0 and the reaction rateλ. It should be noted that the
excess is not localized at the boundary but extends diffusively into the system by virtue of the
functional dependence off2 on the ratioz2/Dt .

The late-time density excess in two dimensions

In two dimensions the beta function takes a different formβg ∝ g2. In this case we have the
scaling of the reaction parameter in the perturbative densityg̃ ∼ [4π log(t/t̃)]−1. The leading-
order terms in time are now taken, which involves the RG-improved tree-level calculation for
the bulk density and the one-loop calculation for the excess density

%B(t) = log(Dt/Dt̃)

8πDt
+ O

(
1

t

)
= log(t)

8πDt
+ O

(
1

t

)
%E(z, t) = 1

8πDt
f2

(
z2

2Dt

)
+ O

(
1

t log(t)

)
.

(21)

Again, the bulk density is the known result given in table 1. Now the leading-order term of the
excess is the fully universal, asymptotically exact result for two dimensions. We will discuss
this further in the summary.

1.2. Exact solution in one dimension

The RG has provided the universal properties of the density excess as a function of dimension
and the late-time form was found exactly for the case of two dimensions. However, the epsilon
expansion is not expected to give accurate results in one dimension. In this section we solve
the one-dimensional case with an infinite reaction rate. However, by virtue of the universality
demonstrated above, the results to be described are also valid for any finite reaction rate.

The model is now defined in dimensiond = 1 with an infinite on-site reaction rate. Since
the reaction rate is infinite, each lattice site can be occupied by at most one particle. Denoting
a particle on sitek byAk and an empty site byOk the dynamics of the model are then

OkAk+1↔ AkOk+1 with a rate D

AkAk+1→ OkOk+1 with a rate 2D
(22)

wherek is restricted to the positive integers. Att = 0 the state of the system is chosen to be
an uncorrelated random initial state with density1

2.
Homogeneous reaction systems in one dimension have been solved exactly by various

methods [10–13]. For inhomogeneous systems, a general method was recently proposed in
which the model is solved by mapping it onto a dual system [24, 25]. Using this method, the
master equation is first written in a quantum spin chain representation. Each configuration is
represented by a vector|s1, s2, . . .〉 ≡ |{si}〉, wheresi takes the value12 if site i is empty and
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− 1
2 is sitei is occupied. The state ket of the system is defined similarly to the bosonic case to

be
|P(t)〉 =

∑
{s}
P({si} : t)|{si}〉 ∂t |P 〉 = −H|P 〉

H = −D
∞∑
k=1

(s+
k s
−
k+1 + s+

k+1s
−
k + 2s+

k s
+
k+1− (1− σ zk )/2).

(23)

Heres±k = (σ xk ± iσyk )/2, where theσ are Pauli matrices. Averages are calculated in the same
way as the bosonic case, by using the projection state〈| =∑{s}〈{si}|. It was shown that using
a similarity transformation the system can be mapped onto a dual process with the following
dynamics:

AkAk+1→ 0k0k+1 rate 2D for sitesk = 1 . . .∞
0kAk+1→ Ak0k+1 rate D for sitesk = 0 . . .∞
Ak0k+1→ 0kAk+1 rate D for sitesk = 1 . . .∞
A1A2→ 0102 rate D.

(24)

Denoting the dual Hamiltonian aŝH, the required density takes the form

%k(t) = 1
2〈2|e−Ĥt |k − 1, k〉.

Here〈2| is the sum of all two-particles states and|k − 1, k〉 is the initial state with only two
particles located at sitesk andk−1. However, since the reaction rate is infinite the two-particle
transition probability can be written in terms of single-particle transition probabilities, giving
the density as

%k(t) = 1
2

∞∑
m=0

∞∑
n=m+1

[Tm,k−1(t)Tn,k(t)− Tn,k−1(t)Tm,k(t)] (25)

whereTn,k(t) is the probability of a particle starting at siten to be at sitek at timet in the dual
system with the forms

Tz,a(t) = B(z− a : t) +B(z + a : t)

T0,a(t) = 1−
∞∑
m=1

Tm,a(t).

HereB(m : t) = e−2DtIm(2Dt) is the single-particle propagator withIm the order-mmodified
Bessel function. Using these, results the double sum (25) is reduced to

%k(t) = 1
2

[
− B(1− k : t)

∞∑
m=3

B(m− k : t)

+
∞∑
m=2

B(m− k : t)[B(m− k : t) +B(m + 1− k : t)]

+B(k : t)
∞∑
m=2

B(m + k : t)

−
∞∑
m=1

B(m + k : t)[B(m + k : t) +B(m + 1 +k : t)]

−B(k : t)
∞∑
m=2

B(m− k : t)

+B(1− k : t)
∞∑
m=1

B(m + k : t) +B(k : t) +B(1− k : t)

]
.
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Table 1. The known results for the late-time bulk density and the new results for the bounded
system.

d Late-time bulk density%B Late-time excess density%E

1 1
(8πDt)1/2

1
(8πDt)1/2

f1

(
z2

Dt

)
2− ε 1

4πε(Dt)d/2

[
1 + ε

4 (2 log(8π)− 5)
]

+ O(ε) 1
(8πDt)d/2

f2

(
z2

Dt

)
+ O(ε)

2 log(t)
8πDt

1
(8πDt) f2

(
z2

Dt

)
> 2 1

2λt sub-leading

Taking the late-time limit, which is valid when
√
Dt is much greater than the lattice spacing

and writingk = z, we obtain

%(z, t) = 1√
8πDt

[
erf

(
z√
2Dt

)
+
√

2 erfc

(
z√
4Dt

)
exp

(
− z2

4Dt

)]
%(z, t) = 1√

8πDt
+ %E(z, t)

(26)

where again the density is split into bulk and excess%E components

%E(z, t) = 1√
8πDt

f1

(
z2

2Dt

)
f1(ξ

2) =
√

2 erfc

(
ξ√
2

)
exp

(−ξ2

2

)
− erfc(ξ).

(27)

As expected the bulk component of the density%B is found to be identical to the infinite,
unbounded case [12,13]. The asymptotic form of the function isf1(ξ

2) ∼ exp(−ξ2/2)/ξ .

1.3. Summary of the diffusive case

Results have been presented from an analysis of a reaction-diffusion process near an
impenetrable boundary. It was found that in two dimensions and below a density excess
forms near the boundary and extends into the bulk diffusively. The density can be written in
the following form

%(z, t) = %B(t) + %E(z, t)

where%B(t) is the bulk result seen in a translationally invariant system and%E is the boundary-
induced excess density—see table 1. Using the field-theoretic RG the universal properties of
the density excess were found. It was shown that the excess is independent of both the initial
density and the reaction rateλ. In two dimensions it was found that the density excess is
marginally less dominant than the bulk, with the following asymptotic (largez2/2Dt) limit

%E = 1

8πDt

(
2Dt

z2

)3/2

exp

(
− z2

4Dt

)
in two dimensions. (28)

The full asymptotically-exact late-time result is given by (21) with the double integral (13) and
is plotted in figure 3.

In one dimension the excess density was obtained exactly (27) by the solution of a
corresponding quantum spin system and is also plotted in figure 3, with the asymptotic (large
z2/2Dt) limit

%E = 1

(8πDt)1/2

(
2Dt

z2

)1/2

exp

(
− z2

4Dt

)
in one dimension. (29)
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Figure 3. The density excess in one and two dimensions,f1 andf2. The RG results are compared
with simulations at timet = 10 (◦) andt = 80 (∗). The exact resultsf1 calculated for infinite
reaction rate is compared with simulations for finite reaction rateλ = 1

2 (+) demonstrating the
universality.

Here we see that the excess and bulk density share the same leading order decay of% ∼ t−1/2.
The ratio between the density at the boundary and the density far in to the bulk below two
dimensions is thus independent of all system parameters except the dimension of space. In
one dimension it is numerically equal to

√
2 and it is interesting to note that the RG gives quite

a fair indication of this ratio

%(0, t)

%B(t)
= 1 + ε

(
3

4
+
π

2
− 3π2

16

)
+ O(ε2) (30)

which is∼1.47 for one dimension (ε = 1). It should also be noted that above the critical
dimension there is a sub-dominant density excess. However, these effects are transient and
quickly decay to yield the predicted mean-field result.

We end the discussion of the diffusive case by considering the implications of the solution
in d = 1 to the coarsening dynamics of the critical Ising model. As explained earlier, the
domain wall dynamics in this Ising system can be mapped onto the mutually annihilating
random walk [6]. The boundary in the reaction system corresponds to a fixed spin in the
magnetic system. Consider the magnitude of the coarse-grained magnetization near this fixed
spin. This quantity is a function of the local density of domain walls—the fewer the domain
walls the higher the magnetization. The density excess (27) implies a higher density of domain
walls near the fixed spin. This yields the counter-intuitive result that the absolute value of the
coarse-grained magnetization islower near fixed spin.

2. Ballistic annihilation near a boundary in one dimension

In the previous section the effect of an impenetrable boundary on the single-particle reaction-
diffusion process A +A→ 0 was examined. It was found that for diffusing reactants a density
excess was produced at the boundary. In this section we will demonstrate that this effect is not
independent of the reactants’ dynamics: for the case of ballistic annihilation a densitydeficit
is formed.
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By ballistic motion, it is meant that reactants travel in straight lines until they collide and
a reaction occurs. These dynamics are relevant for gas-phase and some excitonic reactions [3]
and a good review can be found in [8]. Because of the deterministic dynamics of individual
reactants, the only sources of noise are in the initial distribution of particles or if the reaction
rate is finite. Though a great deal of analytic work exists on these systems, they have largely
examined two kinds of initial conditions in one dimension. One form of initial condition was
introduced [26] to examine the dynamics of reaction fronts and has been demonstrated to be
universal with respect to a finite reaction rate [27]. However, the case that will interest us in this
section is that of random initial conditions whereby particles are distributed upon a line with
each particles’ velocity drawn from the same distribution. A broad variety of initial-velocity
distributions have been studied [8, 28, 29] and universal effects analysed for the continuous
case [30]. However, in these cases the systems that have been examined have been infinite and
translationally invariant.

In this section we will generalize the binary-velocity model introduced by Elskens and
Frisch [31]. The behaviour of this translationally invariant system will be recalled below and
the generalization to the case of a semi-infinite system bounded by a reflecting wall will be
introduced. The basic results will be stated and then details of the method given. Finally, the
section is closed with a summary of the behaviour in the late-time limit.

Summary of known results for the unbounded system

The model introduced in [31] comprises an infinite line upon which particles move with fixed
velocity +c or −c. When two particles meet a mutual annihilation always occurs, and both
particles are removed from the system. The initial conditions provide the only source of noise
and are defined such that at timet = 0 particles are equally spaced along the line and given
either of the two fixed velocities with equal probability. A mean-field approach predicts that
the density decay should vary as% ∼ t−1. Nevertheless, the density decay derived from a full
solution of the model has the form% ∼ t−1/2. This is the same exponent as for the diffusive
case, but it should be stressed that whereas in the diffusive case the changed exponent comes
from a dynamic effect, in ballistic annihilation it is a property only of the initial conditions.
This can be seen from the following qualitative argument. Consider the density fluctuations in
a domain of length̀. The typical fluctuation in the difference of particle numbers withv = +c
andv = −c inside this domain is∝ `1/2. After a time∝ ` only the residual fluctuation will
remain, so that the density% will be ∝ `−1/2. Re-expressing̀ as a function oft one obtains
the correct density-decay exponent% ∝ t−1/2.

Annihilations near a boundary—new results

A reflecting boundary is now introduced into the model defined above. The boundary is
placed at positionz = 1

2 on the one-dimensional line and particles are placed, equally spaced
at positionsz = 1, 2, . . . . When referring to particlek it is meant that this is the particle that
was at positionz = k at timet = 0. Each particle is given a velocity of either +c or−c with
equal probability. The velocity of each particle is fixed unless it reaches the impenetrable,
reflecting boundary. In this case a particle with velocity−c rebounds with a fixed velocity
+c. Reactions occur with a probability of unity on contact, so that once the trajectories of
two particles meet a mutual annihilation always occurs, see figure 5 for an illustration of the
dynamics.

The quantity of interest is the density% averaged over all possible initial velocity
distributions. It will be demonstrated below that this density can be written as a sum of a
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Figure 4. An illustration of the mapping to the ballot problem. The arrows, representing the
direction a particle is moving, are considered as moves of a random walker as illustrated above.

Figure 5. An example of the initial conditions studied. The numbers mark lattice sites, and dashed
lines represent the trajectories of the particles.

bulk, background density%B equivalent to that calculated in [31] and a boundary-induced
density deficit%D

%(z, t) = %B(t) + %D(z, t).

The scaling form of the density deficit, given exactly in the following sub-sections, is

%D(z, t) = − 1

(ct)1/2
g
( z
ct

)
(31)

and should be compared to the diffusive form which decays with the same exponent∼t−1/2

but is a function of the dimensionless quantityz2/Dt . In the ballistic case it is also seen that
the effect penetrates from the boundary into the bulk, though here it is ballistic by virtue of the
dependence ofg on the dimensionless formz/ct .

A detailed description of the exact solution now follows. First, the probability of any
specific pair of particles to react is calculated. The method of solution is combinatoric and
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related to the well knownballot problem[32] of probability theory. From this fundamental
pair-reaction probability all other quantities are obtained, including the density profile and the
profiles for left- and right-moving particles.

2.1. Exact solution in one-dimension

The pair annihilation probability

Because the model defined above has a reaction probability of one, only mutual annihilations
between even and odd particles are possible. There are two cases that need to be considered:
either the even or the odd particle can be nearest the boundary. We obtain all the possible
pair-annihilation probabilities by considering an odd-numbered particlek annihilating either
with even particlek + (2n + 1) or even particlek − (2n + 1) wheren = 0, 1, . . . .

Consider first the probability of the odd-numbered particlek to mutually annihilate with
particlek+(2n+1). This probability has two contributions: (i) direct annihilation with particle
k having initial velocityv = +c and (ii) indirect annihilation with particlek having an initial
velocity v = −c but rebounding from the wall. For direct annihilation the calculation is
identical to the homogeneous case [31]. A mapping exists to the problem of a random walker
returning to the origin after 2n + 2 steps for the first time—this is the so-called ballot problem
(see figure 4). The probability for this to happen, given that the initial velocity of particlek is
+c is

1

2n + 1

(
1

2

)2n+1(2n + 1

n + 1

)
. (32)

Next, consider the contribution from the indirect case whereby a particle is first reflected
from the boundary before annihilating. In this case the initial velocity of particlek is v = −c
with the total probability given by the product of equation (32) and the probability that particle
k reaches the boundary. The latter can be found by noting that particles labelled by an even
index with an initial velocityv = −c are always annihilated before arriving at the wall. It is
therefore equivalent to the probability of a random walker not to have returned to the origin
afterk − 1 steps,(

1

2

)k−2 k−1∑
x=2,4...

x

k − 1

(
k − 1
x+k−1

2

)
=
(

1

2

)k−2(
k − 2
k−3

2

)
(33)

where this is conditional on particlek having an initial velocityv = −c. Combining the two
results of equations (32) and (33) gives the net probability that particlek interacts with particle
k + (2n + 1), Pk,k+(2n+1) regardless of particleks’ initial velocity

Pk,k+(2n+1) = 1

2n + 1

(
1

2

)2n+2(2n + 1

n + 1

)(
1 +

(
1

2

)k−2(
k − 2
k−3

2

))
. (34)

The final case of the odd-numbered particlek to interact with particlek− (2n+ 1), Pk,k−(2n+1),
can also be derived using the arguments given above

Pk,k−(2n+1) = 1

2n + 1

(
1

2

)2n+1(2n + 1

n + 1

)
. (35)

Equations (34) and (35) give all the possible pair annihilation probabilities in the system,
where it should be remembered that particlek is odd-numbered.
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The density calculation

To ease the notation in this section we setc = 1, corresponding to a trivial redefinition of time.
The initial conditions of equally spaced particles introduces a discretization of time into the
problem. We consider the model at integer time steps when particles will be found only at
positionsz = 1, 2 . . . which we call lattice sites. In the calculation of the density two cases
must be considered: (i)z > t when the presence of the boundary does not affect the density
profile, (ii) z < t where the boundary does affect the profile.

(i) The casez > t . Here the density is the same as for the infinite-system case [31]. The
contribution to%(z, t) can arise from particlez + t andz− t . Using the mapping to the ballot
problem we find

%(z, t) =
(

1

2

)2t−1(2t − 1

t − 1

)
(36)

which is the probability of particlez − t not to interact with particles up to and including
z + (2t − 1) added to an equal contribution from particlez + t . Note that the results are valid
for t = z since the contribution from a particle initially at site 1 with velocityv = −1 which
rebounded off the wall is equivalent to the contribution from a ‘ghost’ particle initially at site
0 with velocity +1.

(ii) The casez > t . There are two contributions to the density at sitez, one from particle
z+ t with an initial velocityv = −1 and another from particlet − z+ 1 with an initial velocity
v = −1 which rebounded from the wall at timet − z + 1

2. First, the contribution from particle
z + t is considered withz odd. This particle reaches sitez if it does not annihilate with any of
thez + t − 1 particles to its left. Whenz + t is odd (t is even) we obtain for this probability(

1

2

)z+t−1 z+t−1∑
x=2,4,...

x

z + t − 1

(
z + t − 1
z+t−1+x

2

)
=
(

1

2

)z+t−1(
z + t − 2
z+t−3

2

)
.

Whenz + t is even (t is odd) the particle never reaches the wall so that the probability of a
particle initially at sitez + t of surviving up to sitez is the sum of all the chances of being
annihilated after sitez

2z−3∑
x=1,3,...

(
1

2

)z+t−1 1

x

(
z + t − x − 2

z+t−x−3
2

)(
x
x+1

2

)

=
(

1

2

)z+t−1 [
z + t − 1

z + t

(
z + t − 2
z+t−2

2

)
− t − z + 1

z + t

(
t − z
t−z
2

)(
2z− 2

z− 1

)]
.

Now, the contribution from particlet − z + 1 is considered also withz odd. This is non-zero
only if t − z + 1 is odd (t is odd), and is then given by,(

1

2

)t−z (
t − z− 1
t−z−2

2

)(
1

2

)2z−1 2z∑
x=2,4,...

x

2z

(
2z

2z+x
2

)
=
(

1

2

)t+z−1(
t − z− 1
t−z−2

2

)(
2z− 1

z− 1

)
.

Combining the above results from particlez + t and particlet − z + 1 we obtain the density at
odd sitesz and at even and odd times. Using similar argumentation allows the results for even
sites also to be found. The forms for the densities are

%(zodd, teven) = %(zeven, todd) =
(

1

2

)z+t−1(
z + t − 2
z+t−3

2

)
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Figure 6. An example of the exact (a) density profile and (b) densities of left and right moving
particles at timet = 30. The difference between odd and even sites becomes increasingly less
pronounced at later times.

%(zodd, todd) = %(zeven, teven) =
(

1

2

)z+t−1 [
z + t − 1

z + t

(
z + t − 2
z+t−2

2

)
− t − z + 1

z + t

(
t − z
t−z
2

)(
2z− 2

z− 1

)
+

(
t − z− 1
t−z−2

2

)(
2z− 1

z− 1

)]
.

These results taken together represent the complete density profile at all times. An example
is shown graphically in figure 6. It is clear from these results that a density deficit is indeed
formed at the boundary. It should also be commented upon that the even/odd effect, though
strong at early times, becomes increasingly less significant at later times. We now consider
how this density is distributed between left and right moving particles.

The density of left- and right-moving particles

For the case of the unbounded system the density of left- and right-moving particles is equal by
symmetry. For this reason it is only necessary to consider the casez < t because the boundary
has no influence forz > t . Using a similar method as above, the following forms are found.

The density of left-moving particles.

L(zeven, todd) = L(zodd, teven) =
(

1

2

)z+t−1(
z + t − 2
z+t−3

2

)
L(zeven, teven) = L(zodd, todd)

=
(

1

2

)z+t−1 [
z + t − 1

z + t

(
z + t − 2
z+t−2

2

)
− t − z + 1

z + t

(
t − z
t−z
2

)(
2z− 2

z− 1

)]
.

(37)

The density of right-moving particles.

R(zodd, teven) = R(zeven, todd) = 0

R(zodd, todd) = R(zeven, teven) =
(

1

2

)t+z−1(
t − z− 1
t−z−2

2

)(
2z− 1

z− 1

)
.

As an example, the left and right densities for the even time oft = 30 are plotted in the
second graph of figure 6. From this graph it can be clearly seen why the deficit occurs. As
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time progresses the remaining particles tend to congregate in groups which move in the same
direction. Once such a group hits the boundary it mostly annihilates within itself, reducing the
density of returning (right-moving) particles.

2.2. Summary of ballistic case

The effect of an impenetrable, reflecting boundary has been examined on a one-dimensional
realization of ballistic annihilation. The system evolves deterministically from an initial
random velocity distribution and various quantities, averaged over different realizations of
this velocity distribution, were calculated exactly. In particular, the density profile of the
reactants as a function of time and distance from the boundary was obtained. It was found
that, in contrast to the diffusive case studied in the previous section, a density deficit%D(z, t)

was formed at the boundary that extends into the system ballistically

%(z, t) = %B(t) + %D(z, t)

%D(z, t) = − 1

(ct)1/2
g
( z
ct

)
.

In the late-time limit, the scaling functiong takes the form given in table 2 and the late-time
form of the full density is shown in figure 7. Also calculated were the density profiles for the
left- and right-moving particles, of which the asymptotic functional forms are given in table 2
and are plotted in figure 8. Though the specific initial conditions of equally spaced particles was
considered it is expected to hold for more general particle distributions. For example, the case
of Poissonianally distributed particles can be shown to give the same late-time results. From
the physical argument given above for the deficit, it might be expected that similar behaviour
is also seen in higher dimensions.

Table 2. The late-time scaling forms for the bulk, deficit and left- and right-moving density profiles.

%B(t) %D(z, t) L(z, t) R(z, t)

z < ct 1√
πct

− 1√
πct

(
1− 1√

2
√

1+z/ct

)
1√

2πct
√

1+z/ct
0

z > t 1√
πct

0 1√
4πct

1√
4πct

Figure 7. The late-time scaled density profile near the boundary.
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Figure 8. The late-time scaled density of (a) left-moving particles withv = −c and (b) right-
moving particles withv = +c.

3. Discussion

In this paper we have considered the effect of an impenetrable boundary on the single-species
reaction A + A→ O. The boundary breaks the translational invariance of the system and
introduces a spatial dependence into the reactant density profile. Two different dynamics for
the reactants were considered: diffusive and ballistic propagation. For the case of reactants that
diffuse it was found that an excess density is formed, whereas for ballistic annihilation a density
deficit was obtained. It is interesting, from the viewpoint of surface critical phenomena to
compare the influence of the boundary at different length and timescales on these two reaction
processes. In the system with diffusive reactants it was seen in the RG treatment that the
impenetrable/reflecting boundary behaves the same way regardless of scale: the propagator is
not renormalized and maintains the form (6). However, this is not the case for ballistic reactions.
At late times the reactants tend to move in groups that share the same velocity. When such
a group meets the reflecting boundary almost total internal annihilation will occur. Hence,
contrary to the case of diffusive reactions, for ballistic annihilation the reflecting boundary
becomes aneffectively absorbingboundary in late times.

An obvious project for further study is the effect of an impenetrable boundary on the two-
species reaction A + B→ O. Also, the universal properties of ballistic annihilation should
be further explored. It is surprising to note that even in unbounded systems the problems of
ballistic annihilation in higher dimensions, finite reaction rate and different initial velocity
distributions have been relatively untouched. It should be possible to solve the model that
was examined in section 2 of this paper with a finite reaction rate, using the same technique
as [27] and the same long-wavelength behaviour is expected. More interesting would be to
analyse the sensitivity of the evolution to different initial velocity distributions, particularly in
higher dimensions. Finally, given the results presented in [33] it would be worth examining
the effects of a rough boundary on a simple reaction process.
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