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Boundary effects in reaction-diffusion processes
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The effects of a boundary on reaction systems are examined in the framework of the general single-species
reaction/coalescence process. The boundary naturally represents the reactants’ container, but is applicable to
exciton dynamics in a doped TMMC crystal. We show that a density excess, which extends into the system
diffusively from the boundary, is formed in two dimensions and below. This implies a surprising result for the
magnetization near a fixed spin in the coarsening of the one-dimensional critical Ising model. The universal,
dimensionally dependent functional forms of this density excess are given by an exact solution and the
field-theoretic renormalization group.@S1063-651X~99!50805-2#

PACS number~s!: 02.50.Ey, 05.70.Ln, 82.30.2b, 64.60.Ht
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Reaction systems have been given a good deal of a
tion in the literature over the last few decades. They
widespread in nature and methods developed in their an
sis have an applicability that extends well beyond conv
tional chemical systems. Moreover, they provide excell
examples of dynamical, many-body statistical processes
can exhibit a variety of interesting effects such as sponta
ous symmetry breaking@1# and pattern formation@2#.

In this Rapid Communication, we show that the impo
tion of impenetrable boundaries on a reaction system lead
a nontrivial spatial variation in the reactant density. Ev
though such a boundary would naturally represent the ve
holding the reactants, until now no such studies have
peared in the literature. In systems with many interact
degrees of freedom, boundaries often give rise to surf
effects that penetrate far into the bulk. Our results dem
strate that in reaction systems such long-range effects
indeed present and have a high degree of universality.

We choose the class@3,4# of the general single-specie
reaction processes as the starting point for the study of th
boundary effects in reaction systems, as it will provide
basis for the analysis of more complex systems. This univ
sality class, comprising the annihilating random walkA1A
→O, coalescing random walkA1A→A and any combina-
tion thereof, is fundamental in the theoretical study of re
tion systems and covers a broad range of physical phen
ena. For example, the coalescence process is seen in
dynamics of excitonic annihilation reactions in the Tetra
ethylammonium manganese trichloride~TMMC! crystal
@5,6#. The predicted decay exponent from theory is in agr
ment with experiment for over five orders of magnitude.
should be noted that the boundary effects we introduce h
are exhibited in the TMMC crystal in the presence of Mg21

or Cd21 doping. These defect ions act as perfect reflect
for the annihilating excitons@7#.

A mapping also exists from the annihilating random wa
to the domain coarsening dynamics in the critical on
dimensional Ising magnet@8–10#. In this mapping theA par-
ticles represent domain walls with an annihilation of twoA
particles corresponding to a domain shrinking to zero siz
a background of the opposite phase. An impenetrable bou
ary in the reaction system corresponds to a fixed bound
spin in the Ising magnet. Our analysis will show that dom
PRE 591063-651X/99/59~5!/4725~4!/$15.00
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walls are more likely to be found near the fixed spin than
away. This gives the counterintuitive result that the absol
value of the dynamic, coarse-grained magnetization is a
ally lower near a fixed spin.

In the interest of notational simplicity, we provide he
the analysis specifically for the processA1A→O. However,
all densities given can be converted to the result for the c
lescence processA1A→A by a simple factor of two. The
annihilating random walk has been studied extensively
homogeneous unbounded systems, either of infinite exten
with periodic boundary conditions. Throughout the Rap
Communication, this will be referred to as thebulk case. It is
well known @3,4,11,12# that the variation of the density%
with time t differs from the mean-field prediction%}1/t for
dimensionsd<2. In fact the actual density decays are%
}t21 log t (d52), and%}t2d/2 (d,2) with a universal am-
plitude. In all cases, it must be stressed that the density
mains uniform throughout the system.

In the following, we will first introduce the boundary int
the reaction process and specify the model to be studied.
mean-field approximation will be shown to predict a hom
geneous density unchanged from the bulk case. Howeve
argument will be presented to show that the mean-field p
diction breaks down in low dimensions. The central result
this Communication is that afluctuation-inducedexcess den-
sity develops at the boundary and extends into the sys
diffusively. We outline the field-theoretic renormalizatio
group~RG! description which we use to identify the unive
sal quantities of this excess. These calculations were
formed in real space to one-loop order and show that in
dimensions and below, the density excess%E has the follow-
ing form:

%E5
1

~8pDt !d/2
f dS z2

2Dt D . ~1!

Here, D is the diffusion constant of the reactants,z is the
normal distance from the boundary, andf d is the dimension-
ally dependent scaling function. We were able to find t
late-time scaling functionsf 2 and f 1 exactly in both two and
one dimensions@given in Eqs.~8! and ~11!, respectively#.
The former we derive from the RG improved field-theore
R4725 ©1999 The American Physical Society
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calculation and the latter from an exact solution. Finally,
the context of surface critical phenomena, the behavior in
relatedballistic annihilation reaction system will be briefly
examined and compared with the diffusive case.

We now introduce the model. The system is defined o
hypercubic,d-dimensional lattice with a lattice spacing o
unity. The lattice, is infinite ind21 transverse dimension
and semi-infinite~sites 1,2, . . . ,̀ ) in what will be called the
z direction. At time t50 the lattice is filled with an initial
density%0 of identical particles that perform two types o
dynamics: diffusion and mutual annihilation. The diffusion
represented by each particle hopping at a rateD to any
neighboring site at random. A hop from sitez51 towards
the boundary is disallowed. The diffusion is independent
each particle, and hence multiple occupancy of each sit
possible, leading to bosonic particle statistics. However
there aren>2 particles on a particular site, a reaction c
occur there with a rateln(n21) to reducen by 2.

The above dynamics can be approximated by amean-field
description. This involves ignoring all possible correlatio
by considering a self-consistent equation involving just
average density%̄. In the continuum limit the boundary i
enforced by a zero-current restriction, thus

] t%̄5D¹2%̄22l%̄2 with ]z%̄uz5050. ~2!

The boundary restriction is compatible with the bulk soluti
%̄5%0 /(11%02lt). Hence, in the absence of strong flu
tuations, the density is uniform throughout the system.

However, correlations must be properly accounted for
low dimensions. Consider the dynamics of the model, in o
dimension, up to a timet and far from the wall. Becaus
random walks in one dimension are recurrent, most parti
within a diffusion lengthl b;A2Dt in the bulk, will have
interacted and annihilated. This leads to a density in the b
of the system of%b. l b

21.cb /At. However, close to the
wall the diffusion length is smaller,%w. l w

21.cw /At since
cw.cb , leading to a density excess near the boundary.

Nevertheless, this argument is rather crude and a me
for systematically including fluctuations is required. The R
has provided such a method for calculating bulk quanti
@4,11,13–15#, with the advantage of clearly identifying un
versal properties. We now present an overview of the ge
alization to a system with a boundary: a case technic
more complicated due to the lack of translational invarian
Details of the calculation will be provided elsewhere@16#.

The field-theoretic description is obtained by first writin
a master equation. This describes the flow of probabilit
between microstates of the system and is conveniently w
ten in second-quantized form] tuP&52HuP&. The vector
uP& is the probability-state vector written in a Fock space a
acted upon by the evolution operatorH,

H5(
i

S D(
j

ai
†~ai2aj !2l@12~ai

†!2#ai
2D , ~3!

where a†,a are the usual bosonic operators. The sumi is
over all lattice sites, and the sumj is over all of site i ’s
neighbors, with the condition that both sums are restricte
the half-space.
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The algebraic descriptionH(a,a†) is mapped onto a con
tinuum path-integral for the actionS(f,f̄) where the com-
plex fieldsf andf̄ are analogous toa anda†21. The action
S5SD1SR1S%0

comprises diffusionSD , reactionSR , and

initial-conditionS%0
components. The diffusive part provide

the propagator for the theory, which is Gaussian for
transverse dimensions and has the the following ‘‘mirrore
form for thez dimension

Gz~zf ,zi ,t !5G~zf2zi ,t !1G~zf1zi ,t !, ~4!

where G(z,t) is a Gaussian with a standard deviation
2Dt. The other components in the action are

SR52lE
0

t

dtE
z.0

ddr f̄f21lE
0

t

dtE
z.0

ddr f̄2f2,

~5!

S%0
52%0E

0

t

dtE
z.0

ddr f̄d~ t !.

The upper critical dimension of the theory isdc52 and ob-
servables were rendered finite by dimensional regulariza
in d522e. The propagator is not dressed by the interactio
~5!, implying the boundary remains effectively reflecting o
all scales. In the language of surface critical phenomena,
corresponds to thespecial transition@17# persisting at all
orders. This is different from the behavior frequently seen
equilibrium surface critical phenomena@18# and in related
nonequilibrium systems@19#. In fact only the reaction ratel
is renormalized, with a fixed point structure identical to t
bulk case@11#. This is understandable, as physically t
renormalization ofl is connected to the fact that rando
walks in two dimensions and below are recurrent: a feat
unaffected by the presence of a boundary.

To get nontrivial,z-dependent results it is clear~from the
lack of an excess in the mean-field equation! that the RG
improved perturbation expansion must be taken to at le
one-loop order. Writing the density as an expansion ine
522d and splitting the contribution into an excess%E(z,t)
and a homogeneous, background bulk density%B(t),

%~z,t !5%B~ t !1%E~z,t !, ~6!

the homogeneous bulk density ford,2 is found to be

%B~ t !5
1

4pe~Dt !d/2 S 11
e

4
@2 log~8p!25# D1O~e!.

~7!

This is exactly the result found in@11# as expected.
However, a fluctuation-induced density excess is a

found, representing the new result from this calculation,

%E~z,t !5
1

8p~Dt !d/2
f 2S z2

2Dt D1O~e!,

~8!

f 2~j2!5E
0

1

dsE
0

s

drS r

sD
2 expS 2

j2

~22s2r ! D
@~s2r !~22s2r !#1/2

.
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The function @20# has the asymptoticsf 2;exp(2j2/2)/j3

and is plotted in Fig. 1. A few things should be noted ab
the form of %E . First, this excess is not localized at th
boundary butextends into the systemdiffusively, by virtue of
its functional dependence ofz2/Dt. Also, the excess share
the same universality as the bulk density in that it is ind
pendent of the reaction ratel and the initial density%0.
Finally, for d,2 the amplitude of the excess decays with t
same exponent as the bulk. Hence, the ratio of the boun
to the bulk density

%~0,t !

%B~ t !
511eS 3

4
1

p

2
2

3p2

16 D1O~e2! ~9!

is a constant, universal quantity independent ofall system
parameters except the dimension.

The behavior in two dimensions provides for an intere
ing result: the one-loop calculation Eq.~8! is theexactlate-
time density excess. It is independent from the renormali
reaction rate and therefore represents the universal lea
order, with higher-loop corrections decaying as (t log t)21.
The excess given in Eq.~8! gives surprisingly accurate re
sults even for short times, as can be seen in Fig. 1 where
result for the density excess is compared with simulation

The RG has provided information about the general
havior of the density excess as a function of dimension. T
universal quantities have been identified and the excess
sity correctly predicted for late times ind52. Unfortunately,
thee expansion gives disappointing results for the amplitu
in d51. Motivated by the mapping of the reaction dynam
onto the Ising magnet and the related excitonic coalesce
process, we now provide the exact solution in one dim
sion. We generalize the bulk model described in@12# to in-
clude an impenetrable boundary. The on-site reaction ra
chosen to be infinite, and hence, a site in the system ca
occupied by at most one particle. The dynamical rules can
written in terms of the possible evolutions of a pair of neig
boring sites. Denoting a particle on sitek by Ak and an empty
site byOk , the allowed changes are

FIG. 1. The density excess in one and two dimensions,f 1 and
f 2. The RG result f 2 is compared with simulations at timet
510 (s) and t580 (*). The exact resultf 1 calculated for infinite
reaction rate is compared with a simulation for finite reaction r
l51/2 (1), demonstrating the universality.
t

-

ry

-

d
ng

he

-
e
n-

e

ce
-

is
be
e

-

OzAz11↔AzOz11 , with a rate D,
~10!

AzAz11→OzOz11 with a rate 2D,

where the site labelz51,2, . . . isrestricted to positive inte-
gers. The master equation can be written in the languag
spin-12 operators, and we were able to solve for the dens
using a similarity transformation found in@21# ~details of the
calculation will be presented elsewhere@16#!. The density
can be written as a sum of Bessel functions, of which
continuum limit gives the following density excess:

%E~z,t !5
1

A8pDt
f 1S z2

2Dt D ,

~11!

f 1~j2!5A2 erfcS j

A2
D expS 2j2

2 D2erfc~j!.

This function has the asymptoticsf 1;exp(2j2/2)/j and is
plotted in Fig. 1. Again, the bulk component of the dens
%B51/A8pDt was found to be identical to the infinite cas
@12#. As expected, the form of the solution is in agreeme
with that predicted from the RG treatment. The univer
ratio of the density near the boundary to the bulk dens
given in Eq.~9! is found to be exactlyA2. It should be noted
that the one-loop RG prediction for the universal ratio@given
in Eq. ~9! with e51# is numerically;1.47 for one dimen-
sion, and therefore gives quite a fair indication of the ex
value. This should be compared with the poor one-loop p
dictions for the amplitudes of the density itself in one dime
sion.

The universality~independence from the reaction ratel)
predicted by the RG treatment, can be seen by compa
this exact result forl5` with data from a simulation of a
system with finite reaction rate~Fig. 1!.

The result, Eq.~11!, gives the time-dependent probabilit
density of domain walls in the coarsening, one-dimensio
critical Ising model near a very strong magnetic field, i.e.
fixed spin. The magnitude of the coarse-grained magnet
tion is a function of the local density of domain walls: th
fewer the domain walls the higher the magnetization. Hen
the result implies that the absolute value of the magnetiza
measured near a fixed spin is lower than in the bulk of
system. It would be very interesting to see if this dynam
effect is seen in other magnetic systems or in higher dim
sions.

In summary, results have been presented from an ana
of a reaction-diffusion process near an impenetrable bou
ary. The mean-field equation was shown to predict a
density profile. However, it was demonstrated that in t
dimensions and below, a density excess develops at
boundary. In one dimension it was found that the dens
excess is as significant a contribution as the bulk den
with both decaying as;t21/2. In two dimensions the exces
was found to be marginally subdominant, decaying ast21.
Both of these density excesses share the same universal
the bulk density, in that they are independent of the reac
rate and the initial density. Moreover, a higher degree
universality was found in the ratio between the boundary a
bulk densities: a quantity depending only on the dimens
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of space. The functional forms for the density excess w
obtained for both one and two dimensions and a link w
made to the coarsening dynamics of the one-dimensio
Ising model. Most importantly, it was shown that the exce
is not localized at the boundary but extends diffusive
throughout the bulk of the system. It should be noted t
above the critical dimensions there is a subdominant den
excess. However, these effects are transient and quickly
cay to yield the mean-field result, as predicted.

A quantity much studied recently and related to dom
coarsening dynamics is thepersistenceexponent. This expo-
nent describes the time dependence of the distribution
sites not yet visited by a domain wall. In the homogeneo
bulk case, persistence has been examined by the RG@22,23#
and an exact result found in one dimension@24#. In light of
result ~11! and the fact that the excess penetrates into
system, it would be worth examining the behavior of t
persistence in the presence of a fixed spin.

Finally, it is interesting to consider the difference betwe
the behavior of diffusing and gas-phase ballistic reaction
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netics near a boundary. A simple realization of the ballis
A1A→O system@25# shows the same bulk density-deca
exponent in one dimension as the diffusive case. Howe
contrary to the diffusive case, it can be shown that for b
listic reactions with an~elastic! impenetrable boundary ther
is a lower density of reactants near the wall@16#. This is
understandable, because in late times the remaining part
tend to congregate in groups moving in the same direct
When such a group hits the elastic wall it mostly annihila
within itself, leaving few particles to return. In the context
surface critical phenomena this corresponds to the imp
etrable boundary behaving as an effectivelyabsorbing
boundary on long time scales, in contrast to the diffus
case.
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