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Boundary effects in reaction-diffusion processes
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The effects of a boundary on reaction systems are examined in the framework of the general single-species
reaction/coalescence process. The boundary naturally represents the reactants’ container, but is applicable to
exciton dynamics in a doped TMMC crystal. We show that a density excess, which extends into the system
diffusively from the boundary, is formed in two dimensions and below. This implies a surprising result for the
magnetization near a fixed spin in the coarsening of the one-dimensional critical Ising model. The universal,
dimensionally dependent functional forms of this density excess are given by an exact solution and the
field-theoretic renormalization groupS1063-651X%99)50805-2

PACS numbgs): 02.50.Ey, 05.70.Ln, 82.36b, 64.60.Ht

Reaction systems have been given a good deal of attemnvalls are more likely to be found near the fixed spin than far
tion in the literature over the last few decades. They areway. This gives the counterintuitive result that the absolute
widespread in nature and methods developed in their analyalue of the dynamic, coarse-grained magnetization is actu-
sis have an applicability that extends well beyond convenally lower near a fixed spin.
tional chemical systems. Moreover, they provide excellent In the interest of notational simplicity, we provide here
examples of dynamical, many-body statistical processes aritie analysis specifically for the process- A— O. However,
can exhibit a variety of interesting effects such as spontanedll densities given can be converted to the result for the coa-
ous symmetry breakingl] and pattern formatiofi2]. lescence proces&+A—A by a simple factor of two. The

In this Rapid Communication, we show that the imposi-annihilating random walk has been studied extensively in
tion of impenetrable boundaries on a reaction system leads ttomogeneous unbounded systems, either of infinite extent or
a nontrivial spatial variation in the reactant density. Evenwith periodic boundary conditions. Throughout the Rapid
though such a boundary would naturally represent the vess€lommunication, this will be referred to as thelk case. Itis
holding the reactants, until now no such studies have apwell known [3,4,11,12 that the variation of the densitg
peared in the literature. In systems with many interactingwith time t differs from the mean-field predictiog= 1/t for
degrees of freedom, boundaries often give rise to surfacdimensionsd=<2. In fact the actual density decays ape
effects that penetrate far into the bulk. Our results demon=t~logt(d=2), andot~%?(d<2) with a universal am-
strate that in reaction systems such long-range effects aggitude. In all cases, it must be stressed that the density re-
indeed present and have a high degree of universality. mains uniform throughout the system.

We choose the clags8,4] of the general single-species  In the following, we will first introduce the boundary into
reaction processes as the starting point for the study of thegbe reaction process and specify the model to be studied. The
boundary effects in reaction systems, as it will provide amean-field approximation will be shown to predict a homo-
basis for the analysis of more complex systems. This univergeneous density unchanged from the bulk case. However, an
sality class, comprising the annihilating random wAlk A argument will be presented to show that the mean-field pre-
— O, coalescing random walk+A— A and any combina- diction breaks down in low dimensions. The central result of
tion thereof, is fundamental in the theoretical study of reacthis Communication is that #uctuation-induceexcess den-
tion systems and covers a broad range of physical phenonsity develops at the boundary and extends into the system
ena. For example, the coalescence process is seen in td#éfusively. We outline the field-theoretic renormalization
dynamics of excitonic annihilation reactions in the Tetram-group (RG) description which we use to identify the univer-
ethylammonium manganese trichlorid@MMC) crystal sal quantities of this excess. These calculations were per-
[5,6]. The predicted decay exponent from theory is in agreeformed in real space to one-loop order and show that in two
ment with experiment for over five orders of magnitude. Itdimensions and below, the density excegshas the follow-
should be noted that the boundary effects we introduce heri@g form:
are exhibited in the TMMC crystal in the presence ofVig

or Cd* doping. These defect ions act as perfect reflectors 1 22
for the annihilating exciton§7]. og=———— d(—) (0]
A mapping also exists from the annihilating random walk (87Dt)¥2 7 2Dt

to the domain coarsening dynamics in the critical one-

dimensional Ising magn¢8—10|. In this mapping thé\ par-  Here, D is the diffusion constant of the reactantsis the
ticles represent domain walls with an annihilation of o normal distance from the boundary, ahdis the dimension-
particles corresponding to a domain shrinking to zero size irally dependent scaling function. We were able to find the
a background of the opposite phase. An impenetrable boundate-time scaling functiont, andf, exactly in both two and
ary in the reaction system corresponds to a fixed boundargne dimensionggiven in Eqgs.(8) and (11), respectively.
spin in the Ising magnet. Our analysis will show that domainThe former we derive from the RG improved field-theoretic
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calculation and the latter from an exact solution. Finally, in  The algebraic descriptiok(a,a') is mapped onto a con-

the context of surface critical phenomena, the behavior in thgnyum path-integral for the actioi( ¢, ¢) where the com-
relatedballistic annihilationreaction system will be briefly plex fieldsé and ¢ are analogous taanda’— 1. The action

examined and compared with the diffusive case. . S, ;
. : . =8Sp+Sg+
We now introduce the model. The system is defined on ég S+ Sr+ S, comprises diffusiony , reactionSg, and

hypercubic,d-dimensional lattice with a lattice spacing of mitial—conditionSQ0 components. The diffusive part provides

unity. The lattice, is infinite ind—1 transverse dimensions the propagator for the theory, which is Gaussian for the
and semi-infinitgsites 1,2. . . ) in what will be called the transverse dimensions and has the the following “mirrored”
z direction. At timet=0 the lattice is filled with an initial ~form for thez dimension
density o, of identical particles that perform two types of
dynamics: diffusion and mutual annihilation. The diffusion is
represented by each particle hopping at a @tdo any
neighboring site at random. A hop from site=1 towards
the boundary is disallowed. The diffusion is independent fo
each particle, and hence multiple occupancy of each site is t o ¢ -
possible, leading to bosonic particle statistics. However, if  Sg= 2)\f dtf ddr¢¢2+)\f dtf ddr 22,
there aren=2 particles on a particular site, a reaction can 0 Jz=0 0 Jz=0
occur there with a ratan(n—1) to reducen by 2. ®)

The above dynamics can be approximated Inyean-field S, =— ftdtj d &.

o L ; ; . ) o Qo rodst).

description. This involves ignoring all possible correlations 0 o Jz=0
by considering a self-consistent equation involving just the
average density. In the continuum limit the boundary is The upper critical dimension of the theoryds=2 and ob-
enforced by a zero-current restriction, thus servables were rendered finite by dimensional regularization
in d=2— €. The propagator is not dressed by the interactions
(5), implying the boundary remains effectively reflecting on
all scales. In the language of surface critical phenomena, this
corresponds to thepecial transition[17] persisting at all
orders. This is different from the behavior frequently seen in

GA2:,2,1)=G(zi—z,1) + G(z+z ,1), (4)

where G(z,t) is a Gaussian with a standard deviation of
I,2Dt. The other components in the action are

40=DVZ0—2\02 with d,0|,_,=0. 2)

The boundary restriction is compatible with the bulk solution

0=00/(1+0¢2\). Hence, in the absence of strong fluc- o ilibrium surface critical phenomerjag] and in related
tuations, the densny_ls uniform throughout the system. . nonequilibrium systemgl9]. In fact only the reaction rate
Ho_wever_, correlatlo_ns must be pr(_)perly accounted _for Ns renormalized, with a fixed point structure identical to the
low dimensions. Consider the dynamics of the model, in ong, ;- case[11]. This is understandable, as physically the
dimension, up to a time and far from the wall. Because o, aji7ation of\ is connected to the fact that random

random walks in one dimension are recurrent, most partideﬁ/alks in two dimensions and below are recurrent: a feature
within a diffusion lengthl,~ 2Dt in the bulk, will have | oeactaq by the presence of a boundary.
interacted and annihilated. This leads to a density in the bulk To get nontrivial,z-dependent results it is clegirom the

of the system ofg,=I, *=c,/\t. However, close to the |ack of an excess in the mean-field equatitmat the RG

wall the diffusion length is smalle,,~I,"=c,/\t since  improved perturbation expansion must be taken to at least

C,>Cp, leading to a density excess near the boundary.  one-loop order. Writing the density as an expansionein
Nevertheless, this argument is rather crude and a method 2 —d and splitting the contribution into an excegs(z,t)

for systematically including fluctuations is required. The RGand a homogeneous, background bulk dengigt),

has provided such a method for calculating bulk quantities

[4,11,13-15 with the advantage of clearly identifying uni- o(z,t)=pg(t)+0e(z,t), (6)

versal properties. We now present an overview of the gener-

alization to a system with a boundary: a case technicallfhe homogeneous bulk density fo< 2 is found to be

more complicated due to the lack of translational invariance.

Details of the calculation will be provided elsewh¢ié). €
The field-theoretic description is obtained by first writing ~ €8(1)= 4me(DD2 1+ 7[2log8m)—5]+0O(e).

a master equationThis describes the flow of probability @)

between microstates of the system and is conveniently writ-

ten in second-quantized formy|P)=—"H|P). The vector This is exactly the result found if11] as expected.

|P) is the probability-state vector written in a Fock space and However, a fluctuation-induced density excess is also

acted upon by the evolution operath; found, representing the new result from this calculation,
2
H=> |D> a(a—a)—-\[1-(a)?a?|, (3 __ - | E
i ] i 1 | 1 1 QE(Z,t) 87T(Dt)d/2f2 2Dt +O(€),
wherea',a are the usual bosonic operators. The suia & ®
over all lattice sites, and the sujnis over all of sitei’s 2 exy{ - m)

neighbors, with the condition that both sums are restricted to fo(£2)= fldsfdr(i)
0 0

the half-space. s/ [(s—r)(2—s—1)]¥*
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1.0 ' 0,A,.1-A0,.,, with a rateD,
— f, two dimensions (10
: AA,.,—0,0,,, with a rate D,

di2

== f, one dimension

%' d0
<06 where the site labet=1,2, . .. isrestricted to positive inte-
2 gers. The master equation can be written in the language of
E 04 spin+ operators, and we were able to solve for the density
G using a similarity transformation found [21] (details of the
8 calculation will be presented elsewhdri6]). The density
302 can be written as a sum of Bessel functions, of which the
@ continuum limit gives the following density excess:

0.0

0 1 2

scaled distance from the boundary z/(ZDt)“Z

Ce(Z,0)= ———==T1| 57"
/ 2Dt
FIG. 1. The density excess in one and two dimensiépsand 87Dt
f,. The RG resultf, is compared with simulations at time (12)
=10(O) andt=80 (*). The exact resultf,; calculated for infinite > — §2
reaction rate is compared with a simulation for finite reaction rate f1(&9)= \/Eerf E ex - —erfc(€).

A=1/2 (+), demonstrating the universality.
This function has the asymptotids~exp(—&¥/2)/¢ and is
The function[20] has the asymptotic§,~exp(—&¥2)/&2  plotted in Fig. 1. Again, the bulk component of the density
and is plotted in Fig. 1. A few things should be noted aboutp,=1/\/87Dt was found to be identical to the infinite case
the form of pg. First, this excess is not localized at the [12]. As expected, the form of the solution is in agreement
boundary buextends into the systediiffusively, by virtue of  with that predicted from the RG treatment. The universal
its functional dependence af/Dt. Also, the excess shares ratio of the density near the boundary to the bulk density
the same universality as the bulk density in that it is inde-given in Eq.(9) is found to be exactly/2. It should be noted
pendent of the reaction rae and the initial densityo,.  that the one-loop RG prediction for the universal régiven
Finally, ford<2 the amplitude of the excess decays with thein Eq. (9) with e=1] is numerically~ 1.47 for one dimen-
same exponent as the bulk. Hence, the ratio of the boundagjon, and therefore gives quite a fair indication of the exact
to the bulk density value. This should be compared with the poor one-loop pre-
dictions for the amplitudes of the density itself in one dimen-
sion.
+0(e?) o) The universality(independence from the reaction ratg _
predicted by the RG treatment, can be seen by comparing
this exact result foh =< with data from a simulation of a
system with finite reaction raté-ig. 1).
is a constant, universal quantity independentatfsystem The result, Eq(11), gives the time-dependent probability
parameters except the dimension. density of domain walls in the coarsening, one-dimensional
The behavior in two dimensions provides for an interest-critical Ising model near a very strong magnetic field, i.e., a
ing result: the one-loop calculation E@) is theexactlate-  fixed spin. The magnitude of the coarse-grained magnetiza-
time density excess. It is independent from the renormalizedon is a function of the local density of domain walls: the
reaction rate and therefore represents the universal leadirfigwer the domain walls the higher the magnetization. Hence,
order, with higher-loop corrections decaying adogt)"l.  the resultimplies that the absolute value of the magnetization
The excess given in Eq8) gives surprisingly accurate re- measured near a fixed spin is lower than in the bulk of the
sults even for short times, as can be seen in Fig. 1 where thgystem. It would be very interesting to see if this dynamic
result for the density excess is compared with simulations. effect is seen in other magnetic systems or in higher dimen-
The RG has provided information about the general besions.
havior of the density excess as a function of dimension. The In summary, results have been presented from an analysis
universal quantities have been identified and the excess deof a reaction-diffusion process near an impenetrable bound-
sity correctly predicted for late times th=2. Unfortunately, ary. The mean-field equation was shown to predict a flat
the e expansion gives disappointing results for the amplitudedensity profile. However, it was demonstrated that in two
in d=1. Motivated by the mapping of the reaction dynamicsdimensions and below, a density excess develops at the
onto the Ising magnet and the related excitonic coalescendmundary. In one dimension it was found that the density
process, we now provide the exact solution in one dimenexcess is as significant a contribution as the bulk density
sion. We generalize the bulk model describedi] to in-  with both decaying as-t~*2. In two dimensions the excess
clude an impenetrable boundary. The on-site reaction rate iwas found to be marginally subdominant, decaying as
chosen to be infinite, and hence, a site in the system can l&oth of these density excesses share the same universality as
occupied by at most one particle. The dynamical rules can bthe bulk density, in that they are independent of the reaction
written in terms of the possible evolutions of a pair of neigh-rate and the initial density. Moreover, a higher degree of
boring sites. Denoting a patrticle on skéy A, and an empty  universality was found in the ratio between the boundary and
site by O, , the allowed changes are bulk densities: a quantity depending only on the dimension

Q(O,t)_1+ (3 w3
es €
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of space. The functional forms for the density excess wer@etics near a boundary. A simple realization of the ballistic
obtained for both one and two dimensions and a link wasA+A— O system[25] shows the same bulk density-decay
made to the coarsening dynamics of the one-dimensiona&xponent in one dimension as the diffusive case. However,
Ising model. Most importantly, it was shown that the excesgontrary to the diffusive case, it can be shown that for bal-
is not localized at the boundary but extends diffusivelylistic reactions with arielastig impenetrable boundary there
throughout the bulk of the system. It should be noted thats a lower density of reactants near the wall6]. This is
above the critical dimensions there is a subdominant densitynderstandable, because in late times the remaining particles
excess. However, these effects are transient and quickly déend to congregate in groups moving in the same direction.
cay to yield the mean-field result, as predicted. When such a group hits the elastic wall it mostly annihilates
A quantity much studied recently and related to domainwithin itself, leaving few particles to return. In the context of
coarsening dynamics is thEersistencexponent. This expo- surface critical phenomena this corresponds to the impen-
nent describes the time dependence of the distribution oftrable boundary behaving as an effectivedpsorbing
sites not yet visited by a domain wall. In the homogeneou$oundary on long time scales, in contrast to the diffusive
bulk case, persistence has been examined by th2R@3  Ccase.
and an exact result found in one dimensj@d]. In light of
result (11) and the fact that the excess penetrates into the We would like to thank David Mukamel and Gunter
system, it would be worth examining the behavior of theSchiiz for useful discussions. Fabian Essler, Martin Evans,
persistence in the presence of a fixed spin. and Klaus Oerding are also thanked for their careful reading
Finally, it is interesting to consider the difference betweenof the manuscript. The authors acknowledge support from
the behavior of diffusing and gas-phase ballistic reaction kithe Israeli Science Foundation.
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