Coronavirus (Covid-19): Latest updates and information
Skip to main content Skip to navigation

Recent Publications


Show all news items

Whittles, LK; White, PJ; Didelot, X (2019) A dynamic power-law sexual network model of gonorrhoea outbreaks. PLoS Comp Biol. 15 1006748

Whittles, LK; White, PJ; Didelot, X (2019) A dynamic power-law sexual network model of gonorrhoea outbreaks. PLoS Comp Biol. 15 1006748

Human networks of sexual contacts are dynamic by nature, with partnerships forming and breaking continuously over time. Sexual behaviours are also highly heterogeneous, so that the number of partners reported by individuals over a given period of time is typically distributed as a power-law. Both the dynamism and heterogeneity of sexual partnerships are likely to have an effect in the patterns of spread of sexually transmitted diseases. To represent these two fundamental properties of sexual networks, we developed a stochastic process of dynamic partnership formation and dissolution, which results in power-law numbers of partners over time. Model parameters can be set to produce realistic conditions in terms of the exponent of the power-law distribution, of the number of individuals without relationships and of the average duration of relationships. Using an outbreak of antibiotic resistant gonorrhoea amongst men have sex with men as a case study, we show that our realistic dynamic network exhibits different properties compared to the frequently used static networks or homogeneous mixing models. We also consider an approximation to our dynamic network model in terms of a much simpler branching process. We estimate the parameters of the generation time distribution and offspring distribution which can be used for example in the context of outbreak reconstruction based on genomic data. Finally, we investigate the impact of a range of interventions against gonorrhoea, including increased condom use, more frequent screening and immunisation, concluding that the latter shows great promise to reduce the burden of gonorrhoea, even if the vaccine was only partially effective or applied to only a random subset of the population. Author summary The formation and dissolution of sexual relationships in human populations constitute an ever-changing network of links between individuals through which sexually transmitted diseases spread. To study this phenomenon, we developed a dynamic simulation algorithm that can reproduce the same distribution of sexual contacts as observed in real populations. We applied our algorithm to the study of gonorrhoea outbreaks and showed that it results in significantly different patterns of transmission compared to models where the sexual network does not change or is ignored. We show how our model can be incorporated into existing algorithms of outbreak investigation based on genomic sequencing data. We also apply our model to the evaluation of a range of interventions frequently proposed to limit the spread of gonorrhoea transmission, and in particular we quantify the potential of vaccination strategies.

Thu 25 Apr 2019, 13:46