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Pairwise meta-analysis
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1 Only two treatments are
compared
Trt 1 vs Trt 2 can be
directly estimated (d1,2)
But, increasingly, many
competing treatments exist
And multi-arm trials
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Need for a broader approach
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1

2
Network meta-analysis
Solid lines indicate
comparisons are available
Indirect estimate of 2 vs 3

dInd
2,3 = dDir

1,2 − dDir
1,3
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Terminology in NMA (Salanti, 2012)
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From Graph theory:
vertex, edge
Cycle: Red lines
Design: set of
treatments included in a
trial; 1-2 design, 1-2-3
design
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Terminology in NMA (cont.)

Heterogeneity in treatment effects between trials
⇒ As in a pairwise meta-analysis

Consistency: No discrepancy between indirect and direct
estimates: dDir

1,2 = dInd
1,2

Consistency relation: dDir
1,2 = dDir

1,3 − dDir
2,3

Trials of different comparisons were undertaken in different
periods

Right-hand side parameters are basic parameters (db)
⇒ Parametrization of the network

Others are functional parameters (df )
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A simple network
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db = {d12, d13, d14} (red
lines)
⇒ df = d24 = d12 − d14

Consistency relation
⇒ 3-cycle
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Statistical models for NMA

Hierarchical models, more specifically generalized linear mixed
models (GLMMs)

Contrast-based vs arm-based models

Trial-arm level instead of summary-level (aggregate-level)
approach
⇒ Advantage: the former is one-stage approach

Datasets with different endpoints (dichotomous, continuous,
time-to-event) can be modelled

Basic model is same, but likelihood and link function can
change
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Consistency models (Dias et al., 2011)

For convenience, consider data with binomial endpoints

In trial i; tk is a treatment arm
⇒ when k = 1, t1, is a baseline arm.

Number of events, yi,tk
∼ Bin(πi,tk

, ni,tk
)

Linear predictor with logit link

logit(πi,tk
) =

{
µi, if k = 1
µi + dt1tk

+ γi,t1tk
, if k 6= 1.

where µi nuisance parameter and dt1tk
basic parameters

Heterogeneity random effects: γi,t1tk
∼ N (0, τ2)
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Consistency models (cont.)

But, for a multi-arm trial: dependency within trial!

Example: A three-arm trial i with the design 1-2-3

γi = (γi,12, γi,13)T ∼ N2(0,Σγ)

A simple but a convenient structure is as follows (Higgins and
Whitehead, 1996):

Σγ =
[
τ2 τ2/2
τ2/2 τ2

]

Models are needed to account for inconsistency in the
network
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Design-by-treatment interaction model (Higgins et al.,
2012)

Design inconsistency: occurs between trials involving
different designs

1,2,3 trials can be inconsistent with 1,2 trials

Adding design-specific inconsistency parameters to the
consistency model

Improvement of cycle-inconsistency approach (Lu and Ades,
2006)
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Jackson Model (Jackson et al., 2014)

Inconsistency parameters as random effects

logit(πi,tk
) =

{
µi, if k = 1
µi + dt1tk

+ γi,t1tk
+ ω

D(i)
t1tk

, if k 6= 1.

ωD(i) ∼ NT −1(0,Σω) such that Σω has diagonal entries κ2

and all others are κ2/2

NMA-regression: incorporating trial-specific covariates to the
model in order to explain sources of heterogeneity and/or
inconsistency
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Fully-Bayesian inference for NMA models

Markov chain Monte Carlo (MCMC)

A simulation-based technique and the most popular among
NMA-analyzers
Computationally intensive & convergence diagnostics

Integrated nested Laplace approximations (INLA)

An approximate Bayesian method (Rue et al., 2009) for latent
Gaussian models (LGMs)
Fast and accurate alternative to MCMC
Laplace approximations & numerical integration
Implemented in R-INLA (http://www.r-inla.org/)
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INLA for NMA models

How NMA models are LGMs? Three stages:

1 Observational model: p(y|α,Ψ) where α = (µ,db, β,γ,ω)
and Ψ = (τ2, κ2)

2 Latent Gaussian field: p(α|Ψ) ∼ N (0,ΣΨ)

3 Hyperparameters: |Ψ| = 2

We extended INLA implementation (Sauter and Held, 2015)
to different NMA models (Jackson model, NMA-regression)
and also automation
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Smoking dataset (Hasselblad, 1998)

24 trials investigating four
interventions to aid smoking
cessation
Coding; 1: no contact, 2:
self-help, 3: individual
counseling and 4: group
counseling
Area of circle: participants;
width of line: trials
8 designs, 1-3-4 and 2-3-4
three arm trials

1

2

3

4

Network Plot
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Specifications for Jackson model

Basic parameters: db = {d12, d13, d14}

Priors:
⇒ Fixed effects: µ,db ∼ N (0, 1000)
⇒ Hyperparameters: τ, κ ∼ U(0, 5).

MCMC implementation
MCMC via JAGS program
MCMC: 74 parameters to check convergence
50,000 iterations after burn-in of 30,000 iterations
To ensure MCSE below 0.005
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nmaINLA R package

Publicly available from Github repository

library(devtools)
install_github("gunhanb/nmaINLA")

Data preparation step

Fitting a Jackson model

nma_inla(SmokdatINLA, likelihood = 'binomial', type = 'jackson',
fixed.par = c(0, 1000), tau.prior = 'uniform', tau.par = c(0, 5),
kappa.prior = 'uniform', kappa.par = c(0, 5))

MCMC run took 36.3, INLA took 6 seconds.
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Marginal posterior density estimates
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Conclusions

Common framework for contrast-based NMA models to
analyze dataset with different endpoints

INLA’s advantages over MCMC
⇒ Faster, no need to check convergence diagnostics

nmaINLA extracts features needed for NMA

Arm-based models are also possible, but not implemented yet.
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Outlook

INLA especially useful when refitting model is needed

Extensive simulations

Sensitivity analysis (for different priors)

Node-splitting method (a NMA technique)

Cross-validation (for model selection)
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Lu-Ades Model (Lu and Ades, 2006)

Uses cycle-inconsistency approach
Assumption: inconsistency only occurs from 3-cycles
Basic parameters should form a spanning tree
Cycle-specific inconsistency random effects: ωjkl ∼ N (0, κ2)
Multi-arm trials are inherently consistent
Number of inconsistency random effects: ICDF = #df − S
where S is the number of cycles only formed by a multi-arm
trial
Algorithm for ICDF (van Valkenhoef et al., 2012), but not
efficient
In the presence of multi-arm trials, results depend on
treatment ordering!
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Consistency model (MCMC vs INLA)

d12

d13

d14

τ

0.0 0.5 1.0 1.5 2.0

MCMC 95% CI

INLA 95% CI

Burak Kürsad Günhan 24/ 20



Motivation Network meta-analysis Application Conclusions and outlook References

MCMC settings

Consistency model

Burn-in: 30.000 iterations
After burn-in: 20.000 iterations
3 chains, 5 thinning parameter
MCMC run took 29.1, INLA took 2.2 seconds.

Jackson model
Burn-in: 30.000 iterations
After burn-in: 50.000 iterations
3 chains, 5 thinning parameter
To ensure Monte-Carlo standard error is below 0.005 for all
parameters
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Approximation error of INLA

No analytical expression for approximation error of INLA

But, in (quasi)-complete separation situation (binomial
endpoints), INLA shows some inaccuracy

One way to overcome is by using weakly informative priors
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Multi-arm trials

Convenient and simple variance-covariance matrix of
heterogeneity, since we assume

The homogeneity of between-study variations for every
treatment comparison

Also, for inconsistency, the homogeneity of inconsistency for
every treatment comparison
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Inconsistency parameters

Design Parameter MCMC INLA

Mean Stdev. Mean Stdev.

1 ω1
13 0.02 0.56 0.02 0.53
ω1

14 -0.29 0.67 -0.28 0.64
2 ω2

23 -0.07 0.57 -0.07 0.55
ω2

24 -0.10 0.58 -0.10 0.55
3 ω3

13 -0.10 0.52 -0.10 0.50
4 ω4

12 -0.13 0.58 -0.13 0.55
5 ω5

14 0.42 0.81 0.39 0.76
6 ω6

23 -0.11 0.57 -0.11 0.55
7 ω7

24 0.09 0.57 0.09 0.55
8 ω8

34 -0.04 0.53 -0.03 0.50
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