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Motivation

Usually two independent randomized controlled trials (RCTs)
are required to demonstrate efficacy and safety for marketing
authorization.

In small populations the conduct of a single RCT with a
sufficient sample size might be difficult or not feasible.

This is particularly the case
1 in paediatric studies,
2 if the intervention is to treat a rare disease, or
3 if randomization is challenging.

In situations where randomization is difficult to achieve,
methods that incorporate data from other sources in the
estimation of the treatment effects may be beneficial.
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Examples

Examples where the required number of patients were not
randomized include

1 several RCTs in patients with ankylosing spondylitis.
Patients were randomly assigned (in a 4:1 ratio) to either treatment or

placebo. To support the small placebo control, data from eight previous

trials in patients with ankylosing spondylitis were included (Baeten et al.

2013).

2 an RCT in patients with Creutzfeldt-Jakob disease
Meta-analysis combining evidence on the effects of a certain treatment in

patients with Creutzfeldt-Jakob disease from both a randomized study

and a non-randomized study (Varges et al. 2017).

3 the EARLY PRO-TECT trial in paediatric Alport patients
(Gross et al. 2012a).
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Trial design that mimics the Alport trial
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Endpoints

The primary efficacy endpoint in the EARLY PRO-TECT
Alport trial is “time-to-progression to the next disease level”.

This time-to-event endpoint will be assessed in 6-monthly
intervals over the treatment period of 3 years.

The second efficacy endpoint “albuminuria after 3 years
corrected for baseline albuminuria for patients randomized to
receive ramipril compared to placebo” is continuous.

One might also think of binary endpoints such as “progression
to the next disease level within 3 years (yes/no)”.
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Data

We consider a binary endpoint.

Randomized arms: let XiR be the number of events and piR
denote the probability of an event in group i (i = T ,C ).

Non-randomized arms: let XiO be the number of events and
piO denote the probability of an event in group i (i = T ,C ).

Binomial model:

Xij ∼ B(nij , pij ) , i = T ,C ; j = R,O .

Let θR = log
(
pTR (1−pCR )

pCR (1−pTR )

)
and θO = log

(
pTO (1−pCO )

pCO (1−pTO )

)
denote

the log odds ratio for the randomized and observational data,
respectively.
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Model frameworks
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Arm-based versus contrast-based synthesis of data

Absolute or relative effects? Arm-based
synthesis of trial data

S. Dias* and A. E. Ades

We congratulate Hwanhee Hong and colleagues on another fascinating paper (Hong et al., 2015a) arguing the
case for arm-based models for meta-analysis.

The standard approach to meta-analysis is the contrast-based model where the information that is pooled over
trials is the information of the trial-specific relative treatment effect, expressed for example as a log relative risk,
log odds ratio, or as a mean treatment difference. In an arm-based model, it is the absolute log risk, log odds,
or mean outcome on each arm that are pooled.

There is no doubt that arm-based models are an intriguing alternative to the accepted understanding of meta-
analysis, and that they provide a very elegant alternative approach to network meta-analysis (NMA). However,
readers of Research Synthesis Methods (RSM) will have no difficulty in recognising that arm-based models represent
a radical – even revolutionary – departure from current meta-analytic practice.

In this commentary, we begin by outlining the key differences between arm- and contrast-based meta-analysis
to make clear the true extent of the implications of the claims being made. We then argue that contrast based
models are to be preferred on both theoretical and practical grounds.

Hong and colleagues present a number of arguments about the core assumptions of contrast-based models,
both in their RSM paper (Hong et al., 2015a) and previously (Zhang et al., 2014, Ohlssen et al., 2014, Zhang
et al., 2015, Hong et al., 2015b), which we believe are mistaken. We offer some counter-arguments and comment
on the simulation study presented by Hong et al. (2015a).

1. Classic contrast-based, contrast-based plus baseline and arm-based models

Hong et al. (2015a) contrast three kinds of models. We will call these (a) the “Classic Contrast-Based” (Classic CB)
model, which corresponds to the standard model for pair-wise meta-analysis (Higgins and Green, 2008), extended
to NMA (Higgins and Green, 2008, Dias et al., 2013a, Lu and Ades, 2004, Cooper et al., 2009, Lu and Ades, 2006,
Caldwell et al., 2005), (b) “Contrast-Based plus Baseline” (CB + Baseline), and (c) “Arm Based” (AB). It is important
to be clear about notation and terminology, so we start with pair-wise meta-analysis and then turn to NMA.

With the contrast-based models, particularly those used in a frequentist framework, the data to be pooled are
the relative effect measures, and in its most common implementation the absolute effects are not even available
to estimate. Indexing trials by i, the data Di,XY are the observed relative effect measures comparing treatment Y to
X, δi,XY, which in a Bayesian setting are the “shrunken” trial-specific estimates, and dXY are the mean relative effects.
Thus, the “Classic CB” model for pair-wise (two-treatment) data is stated as follows:

Di;XYeN δi;XY ; ; Vi;XY

� �
}Classic CB} model with difference�based likelihood

δi;XYeN dXY ; σ2XY
� �

:
(1)

Arm-based likelihoods (not to be confused with arm-based models) have also been proposed (Prevost et al.,
2000, Smith et al., 1995) particularly in a Bayesian context, partly because they avoid normal approximations for
count data. This obliges us to introduce the parameter μi,X representing the absolute effect of the control arm
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Methods for evidence synthesis

1 The power prior approach assigns a weight to the external
data somewhere in between the cases of irrelevance and full
equality.

2 Bias allowance models assume that the external data are
potentially biased and the potential bias is modelled using an
extra variance component that represents the bias.

3 Meta-analytic approaches or hierarchical models for evidence
from different study designs are an extension of standard
random-effects meta-analysis that explicitly model
between-study-type variability.
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Hierarchical models

The hierarchical structure of model A may be stated as

yj |θj , sj ∼ N (θj , s
2
j ) ,

θj |µ, τ ∼ N (µ, τ 2) , j = R,O ,

where yj is an estimate of θj and sj is its standard error.

The θj differ from study to study and are distributed around a
common mean µ with between-study-type variability or
heterogeneity τ .

The framework for model B consists of two hierarchical structures
with parameters (µT , τT ) and (µC , τC ).

The overall treatment effect is computed as a contrast: µT − µC .
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Figure: Hierarchical structures for model A (top) and model B (bottom).
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Fitting Bayesian hierarchical models

We use a Bayesian approach for fitting the hierarchical models.

Inference for µ and τ is captured by the joint posterior
distribution, from which the marginal distribution of µ is used
to derive point estimates and probability intervals for µ.

Our approach requires prior distributions for µ and τ :
For µ one may use a noninformative (improper) uniform prior
or a normal prior with mean zero and large variance.

For τ we use half-normal (HN) prior distributions.

The R package bayesmeta provides a collection of functions
to facilitate Bayesian inference in the random-effects
meta-analysis model.
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Numerical example
Simulations

Generating data

RCT Treatment Control

No event 31 9

Event 9 11∑
nTR = 40 nCR = 20

Log odds ratio yR = 1.4374
Standard error sR = 0.5877

Observational data Treatment Control

No event 29 29

Event 11 31∑
nTO = 40 nCO = 60

Log odds ratio yO = 1.0361
Standard error: sO = 0.4383

Warwick, April 26th 2017 13/29



1 Setting the scene
2 Methodology

3 Numerical experiments
4 Discussion

Numerical example
Simulations

Fitting model A

bma <- bayesmeta(y, s, mu.prior.mean=0, mu.prior.sd=10,

tau.prior=function(t){dhalfnormal(t,scale=0.5)})

Marginal posterior summary:

tau mu

mode 0.0000 1.1870

median 0.2833 1.1960

mean 0.3428 1.1931

sd 0.2680 0.4699

95% lower 0.0000 0.2637

95% upper 0.8651 2.1278

effect µ
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Numerical example
Simulations

Fitting model B

Compute estimates for the logits(pij ) (i = T ,C ; j = R,O) and
associated standard errors.

bma.t <- bayesmeta(y=yt, s=st, labels=names(yt),

mu.prior.mean=0, mu.prior.sd=10,

tau.prior=function(t){dhalfnormal(t, scale=0.1)})

bma.c <- bayesmeta(y=yc, s=sc, labels=names(yc),

mu.prior.mean=0, mu.prior.sd=10,

tau.prior=function(t){dhalfnormal(t, scale=0.5)})

Compute the convolution, that is, the distribution of the
difference (treatment - control).
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Numerical example
Simulations

Fitting model B (2)

Difference Model A

mean standard error mean sd

1.2056 0.4571 1.1931 0.4699
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Model A 0.2637 2.1278
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Numerical example
Simulations

Simulation setup: meta-analysis scenario

We investigate the performance of models A and B by means
of a so-called general meta-analysis scenario.

We assume that we observe four logit estimates (yTR
, yCR

,
yTO

, yCO
) and associated standard errors (sTR

, sCR
, sTO

, sCO
).

The underlying true effects are µij = logit(pij )
(i = T ,C ; j = R,O).

The effects (µTR
, µCR

, µTO
, µCO

)> are assumed to follow a
multivariate normal distribution with mean (µT , µC , µT , µC )>

and covariance matrix Σ.
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Numerical example
Simulations

Simulation setup: meta-analysis scenario (2)

We consider a scenario in which there are dependencies
between the two randomized arms and between the two
observational arms only.

That is, the covariance matrix of (µTR
, µCR

, µTO
, µCO

)> is
assumed to be

Σ =


σ2 σ2 − τ2

R
2 0 0

σ2 − τ2
R
2 σ2 0 0

0 0 σ2 σ2 − τ2
O
2

0 0 σ2 − τ2
O
2 σ2

 ,

where τ2
R = Var(µTR

− µCR
) and τ2

O = Var(µTO
− µCO

).
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Numerical example
Simulations

Simulation setup: data and evaluation criteria

Four groups motivated by the EARLY PRO-TECT study
protocol:

- nTR = 40: 8 failures / 32 successes
- nCR = 20: 10 failures / 10 successes
- nTO = 40: 8 failures / 32 successes
- nCO = 60: 30 failures / 30 successes

This leads to standard errors: sRT = 0.4, sRC = 0.45,
sOT = 0.4 and sOC = 0.26

Using 2000 simulation runs per parameter combination, we
computed

1 observed coverages for 95% confidence intervals for the pooled
effect.

2 lengths of meta-analytic confidence intervals relative to the
interval length of the RCT.
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Numerical example
Simulations

Simulation setup: between-study heterogeneity

For the between-study-type variability the choice of the prior
distribution can be critical.

For log-odds ratios, values for τ equal to 0.25, 0.5, 1 and 2
represent moderate, substantial, large, and very large
heterogeneity.

For example, exp(1.09τ) is the median ratio of the maximum
to the minimum of any random pair of odds ratios.

Sensitivity analysis: we choose two half-normal priors for
log-odds ratios with the following characteristics:

prior median 95% interval
Half-normal(scale=0.5) 0.337 (0.016, 1.12)
Half-normal(scale=1.0) 0.674 (0.031, 2.24)
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Simulations

Coverages of confidence intervals (nominal level = 95%)

Model A:
PPPPPPτR

τO 0 0.1 0.2 0.5 1 2

0 98.9 99.2 98.7 97.0 89.8 73.2
0.1 99.1 99.2 98.8 96.9 89.2 73.0
0.2 98.9 99.0 98.7 96.7 89.8 73.0
0.5 97.9 97.7 97.5 95.4 87.6 70.9

1 93.9 94.2 94.0 89.8 82.4 69.0
2 81.8 81.0 80.3 78.2 71.7 62.9

Model B:
PPPPPPτR

τO 0 0.1 0.2 0.5 1 2

0 99.5 99.6 99.3 98.2 92.0 71.5
0.1 99.5 99.6 99.3 97.9 91.6 70.8
0.2 99.4 99.5 99.2 98.1 91.8 70.8
0.5 98.9 98.4 98.3 97.0 90.1 69.5

1 94.8 94.9 95.3 91.6 85.4 67.1
2 79.3 78.4 78.0 76.5 70.9 58.5
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Lengths of confidence intervals (relative to RCT, in %)

Model A (67% relative length means an effective sample size gain of ≈ 123%):
PPPPPPτR

τO 0 0.1 0.2 0.5 1 2

0 66.0 66.0 66.1 67.0 70.1 80.3
0.1 66.0 66.0 66.2 67.1 70.2 80.2
0.2 66.1 66.1 66.3 67.3 70.4 79.9
0.5 67.0 67.1 67.3 68.2 71.3 80.2

1 70.2 70.2 70.4 71.2 74.1 82.2
2 79.6 79.9 79.9 80.6 82.0 88.5

Model B (80% relative length means an effective sample size gain of ≈ 56%):
PPPPPPτR

τO 0 0.1 0.2 0.5 1 2

0 79.1 79.3 79.4 79.1 79.9 80.3
0.1 79.4 79.5 79.5 79.5 79.8 80.1
0.2 79.5 79.4 79.4 79.5 79.7 80.1
0.5 79.6 79.5 79.1 79.7 79.9 79.7

1 79.4 79.9 79.9 79.7 80.3 79.9
2 80.0 80.1 80.0 80.2 80.0 79.3
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Coverages (prior: τ ∼ HN(scale = 1.0))

Model A:
PPPPPPτR

τO 0 0.1 0.2 0.5 1 2

0 100.0 100.0 100.0 99.9 98.5 96.2
0.1 100.0 100.0 99.9 99.7 98.8 95.5
0.2 100.0 99.9 100.0 99.7 98.6 94.8
0.5 100.0 99.8 99.6 99.6 97.6 93.0

1 99.7 99.7 99.5 98.2 95.1 88.3
2 98.1 98.4 98.0 95.3 89.5 79.9

Model B:
PPPPPPτR

τO 0 0.1 0.2 0.5 1 2

0 100.0 100.0 100.0 100.0 99.2 92.7
0.1 100.0 100.0 100.0 99.8 99.1 92.7
0.2 100.0 100.0 100.0 99.9 98.6 93.0
0.5 99.9 99.9 100.0 99.9 98.1 90.9

1 99.8 99.7 99.7 99.1 95.8 87.2
2 94.8 96.2 94.9 94.2 89.0 75.0
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Lengths of intervals (prior: τ ∼ HN(scale = 1.0))

Model A:
PPPPPPτR

τO 0 0.1 0.2 0.5 1 2

0 94.9 94.7 94.9 97.2 103.5 118.8
0.1 95.0 94.8 94.9 97.3 102.6 118.6
0.2 95.0 94.8 95.5 97.4 103.5 118.4
0.5 96.7 97.0 97.1 99.4 104.3 119.8

1 102.5 102.7 103.4 104.1 109.5 121.6
2 118.9 119.1 118.6 119.1 123.2 132.4

Model B:
PPPPPPτR

τO 0 0.1 0.2 0.5 1 2

0 118.4 117.4 117.0 118.2 117.7 119.1
0.1 118.5 117.5 117.7 117.9 118.9 118.2
0.2 117.9 116.8 117.1 118.2 118.3 118.3
0.5 117.5 117.8 118.1 118.7 117.8 119.2

1 117.8 118.4 118.6 117.2 118.1 118.3
2 118.4 118.5 118.8 118.5 119.5 118.2
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Summary and conclusions

We have synthesized evidence from a single RCT and observational
data in small populations.

We presented two model frameworks within which evidence
synthesis can be performed. Our simulation results indicate that
framework A should be preferred over framework B.

Recent computational advances in evidence synthesis facilitate the
application of Bayesian hierarchical models.

A meta-analysis of only two studies is a challenging problem, in
particular the choice of a prior distribution for τ .

Risk of bias due to lack of comparability of treatment groups or
confounding.

Adjustments for covariates can be done before the models are fitted.
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Further work (some of it under way)

1 Simulations: consider a scenario, in which there is no correlation
between the two observational arms, but a correlation between the
randomized arms and open-label arm instead.

2 We will also consider continuous and time-to-event endpoints.

3 We estimated a pooled effect, θ∗. Other quantities of interest:
effect, θR , of an RCT in the light of observational data
(shrinkage estimator),
effect, θk+1, of a future study (prediction / extrapolation).

4 Our frameworks bear some similarities to a comprehensive
cohort-study design (Olschewski et al. (1992)). We may also want
to consider a trial design with an additional observational open-label
arm but no registry.
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