
minEPOCH3D Performance
and Load Balancing

on Cray XC30

Michael Bareford, ARCHER CSE Team
michael.bareford@epcc.ed.ac.uk

Outline
1. Introduction (ARCHER and minEPOCH3D)

2. Particle Data Structures

3. Particle Push Vectorisation

4. Load Balancing with respect to Particle Counts

5. Summary and Conclusions

www.archer.ac.uk	

Introducing ARCHER
Advanced Research Computing High End Resource

Introducing ARCHER
Cray XC30 MPP, 4920 Compute Nodes

 Dual Intel Xeon processors (Ivy Bridge), 24 cores, 64 GB

Dragonfly topology

 rank 1: intra-chassis, sixteen 4-node blades (Aries interconnect)
 rank 2: intra-group (two cabinets per group)
 rank 3: optical, inter-group (13 groups make up ARCHER)

Tests conducted on 2-cabinet Test Development Server

 Private to EPCC, minimises resource contention.

ARCHER supports three programming environments

 Cray (v8.3.7), Intel (v14.0.4) and gnu (v4.9.2) running on CLE v5.1 OS

minEPOCH3D
Based on EPOCH v4.4.1 and contains built-in two stream
test case involving around 2 million evenly-distributed particles.

Domain is cube of side 5×105, partitioned over 50×50×50 cells and 2×3×4
cores (one ARCHER node). Periodic BCs.

Simulation runs for 0.15 s, one time step = 18.3 µs.

Total particle and field energies recorded every time step (8190).

Particles stored within linked list.

Two stream test case is two species of 500 000 particles (~4 particles per
cell), electrons and positrons, travelling in opposing directions.
Particle shape function is bspline3.

Linked List
TYPE(particle_species), POINTER :: species_list

TYPE particle_species
 TYPE(particle_species), POINTER :: next, prev
 TYPE(particle_list) :: attached_list
 ...
END TYPE particle_species

TYPE particle_list
 TYPE(particle) :: head
 ...
END TYPE particle_list

TYPE particle
 TYPE(particle), POINTER :: next, prev
 REAL(num), DIMENSION(3) :: pos, mom
 REAL(num), :: mass, weight, charge
END TYPE particle_list

Array of Structures
TYPE particle_data
 INTEGER(i8) :: size, count
 TYPE(particle), DIMENSION(:), POINTER :: part_list
END TYPE particle_data

TYPE particle
 TYPE(vector) :: pos, mom
 REAL(num) :: mass, weight, charge
 LOGICAL :: live
END TYPE particle_list

TYPE vector
 REAL(num) :: x, y, z
END TYPE vector

REAL(num), PARAMETER :: partlist_size_multiplier = 1.0_num
INTEGER(i8), PARAMETER :: partlist_size_min = 100

LOGICAL, PARAMETER :: c_part_shift = .FALSE.

Introduced a live field, which indicates if a particular array position is occupied by a real particle. For example, if ith particle leaves
subdomain, live(i) is set to false. However, live is only used when c_part_shift=false, otherwise particles to the right of escaped
particle are simply shifted one space to the left.

Structure of Arrays
TYPE particle_data
 INTEGER(i8) :: size, count
 TYPE(vector), DIMENSION(:), POINTER :: pos, mom
 REAL(num), DIMENSION(:), POINTER :: mass, weight, charge
 LOGICAL, DIMENSION(:), POINTER :: live
END TYPE particle_data

live array indicates if particular array position is occupied by a
particle, only used if c_part_shift = .false.

Performance (data structures)

Particle Data
Structure

Run Time
Average
(min:sec)

Linked List 17:28

Array of Structures 14:22

AoS (part shift off) 14:16

Structure of Arrays 14:26

SoA (part shift off) 14:23

Cray-compiled EPOCH Code

~18%
improvement for
AoS or SoA

<1% increase in
performance
when particle
shift turned off

Particle Reordering
Sort particles such that adjacent particles in lists are either located
within same cell or within neighbouring cells.

Use a 1D index to reference each cell in a 3D section of domain.

How frequently should particle arrays be sorted?

INTEGER, PARAMETER :: sort_partlist_stride = 10

Every 10 time steps, sort the particle_data arrays according
to particle location, expressed as a 1D grid cell index.

icell = i + (j-1)nx + (k-1)nxny

Particle Reordering (Simple Sort)
! determine which cells are occupied and
! calculate 1D cell index for each particle
DO ip = 1, count
 ic = get_cell_index(part_data%pos(ip))
 cell_occupied(ic) = .TRUE.
 part_cell(ip) = ic
ENDDO

! a sorted list is constructed by iterating
! through the cells in order
DO ic = 1, ncell
 IF (cell_occupied(ic)) THEN
 DO ip = 1, count
 IF (ic == part_cell(ip)) THEN
 ! get particle at position ip in part_data
 ! append that particle to part_data_sorted
 ENDIF
 ENDDO
 ENDIF
ENDDO

Note, ncell for a given rank may change as a result of load balancing.
This naive sorting algorithm is used to understand the performance
benefit of sorting the particles compared to that introduced by the
sorting algorithm itself, see next slide.

Particle Reordering (Quick Sort)
DO ip = 1, count
 ic = get_cell_index(part_data%pos(ip))
 part_cell(ip) = ic
 part_index(ip) = ip
ENDDO

! part_cell is sorted according to ic
! identical rearrangement applied to part_index
CALL qsort_partlist(part_cell, part_index, count2)

DO ip = 1, count
 ip2 = part_index(ip)
 IF (ip2 >= 1 .AND. ip2 <= count) THEN
 ! get particle at position ip2 in part_data
 ! append that particle to part_data_sorted
 ENDIF
ENDDO

AoS Performance (sorting techniques)

Stride Basic Quick

1 >40:00 13:20

10 25:13 12:16

100 13:31 12:15

1000 13:02 12:53

Quick sort with stride of 10-100 seems to be optimal setting for quick sort.

Cray-compiled EPOCH Code (part shift on)

~60% increase in runtime when particle shift turned off.

SoA Performance (sorting techniques)

Stride Basic Quick

1 >40:00 12:57

10 20:16 12:07

100 13:16 12:07

1000 12:52 12:45

Quick sort always completes in a reasonable time and SoA is slightly faster than AoS.

Cray-compiled EPOCH Code (part shift on)

Particle Reordering (AoSoA)
! INTEGER, PARAMETER :: sort_partlist_stride = 1

TYPE particle_species
 ! an element for every cell (one rank ~5000 cells)
 TYPE(particle_list), DIMENSION(:), POINTER :: part_list
 ...
END TYPE particle_species

TYPE particle_list
 TYPE(particle_data), POINTER :: part_data
END TYPE particle_list

TYPE particle_data
 INTEGER(i8) :: size, count
 TYPE(vector), DIMENSION(:), POINTER :: pos, mom
 REAL(num), DIMENSION(:), POINTER :: mass, weight, charge
 LOGICAL, DIMENSION(:), POINTER :: live
END TYPE particle_data

Performance (Cray vs Intel)
Particle Data

Structure
Cray Intel

minEPOCH3D 17:28 12:42

AoS (f) 14:16 12:33

SoA (f) 14:22 12:19

AoS (qs, 100, t) 12:15 11:14

SoA (qs, 10, t) 12:07 10:53

AoSoA (t) 12:33 11:12

The names of the particle data structures have
annotations (see brackets).

f and t indicate c_part_shift=false,true;
qs denotes quicksort; the number gives the
sorting stride.

For AoSoA, having c_part_shift=false,
increases run time by one minute.

Performance (Cray vs Intel)

For Cray-compiled code moving to AoS/SoA gives ~18% decrease in runtime,
if particle sorting is also applied then improvement is roughly 30%.

However, for Intel-compiled code, performance improvement is not as
impressive. Changing data structures only gives ~2%, although particle
sorting increases this figure to 15%.

Sorting reduces the number of cache misses.

Particle Push Vectorisation
Incorporated Bob Bird’s vectorisation of 2D particle push within minEPOCH3D SoA
version.

Particle push loop is split in three.

Loop 1: calculate particle positions at half time step.

Sort particles according to global cell index – done using bin sort.

Loop 2: update momentum and calculate particle positions at full time step.

Optional, sort particles according to index of cell occupied at next half time step.

Loop 3: calculate currents – done within a three-deep nested loop structure
(one for each dimension).

concentrated our vectorisation efforts within the nested loop structure within loop 3

Particle Push Vectorisation

Intel Compiler v15.0.2.164 used to apply
vectorisation/data alignment.

!DIR$ VECTOR ALIGNED
DO iz = zmin, zmax
 DO iy = ymin, ymax
!DIR$ VECTOR ALIGNED
!DIR$ SIMD PRIVATE(...)
 DO ix = xmin, xmax
 jx(...) += jxh(...)
 jy(...) += jyh(...)
 jz(...) += jzh(...)
 ENDO
 ENDDO
ENDDO

Adjust the vectorisation by changing the
position of SIMD directive.

Important to pre-calculate jxh variables
immediately before loop to avoid
exaggeration of final energies.

Aligned on 64 byte arrays.

Particle Push Vectorisation
Particle Push

Type
Runtime Final Particle

Energy
Final Field

Energy

SoA 10:53 8.51 0.0445

Split Only 12:54 8.51 0.0445

Data Alignment 10:51 8.51 0.0445

Outer (z) SIMD 10:09 10.097 1.258

Middle (y) SIMD 10:10 10.065 1.253

Inner (x) SIMD 10:17 23.708 1.888

No pre-calculation of jxh etc

Particle Push Vectorisation
Particle Push

Type
Runtime Final Particle

Energy
Final Field

Energy

SoA 10:53 8.51 0.0445

Split Only 12:54 8.51 0.0445

Data Alignment 10:51 8.51 0.0445

Outer (z) SIMD 10:09 8.51 0.0445

Middle (y) SIMD 10:10 8.51 0.0445

Inner (x) SIMD 10:17 8.51 0.0445

Thanks to Adrian Jackson, EPCC

Particle Load Balancing
Currently, the simulation is divided such that each rank
handles an similar-sized portion of the global grid.

Instead, we could divide workload such that each rank
handles approximately the same number of particles.

Hence, ranks may be assigned grid spaces that vary in
volume and are not necessarily cuboid.

Hilbert Space Filling Curve

Use a 1D data structure to
capture the coordinates of every
cell within a 3D space.

Space filling curve can be plotted
using a recursive algorithm.

Hilbert Space Filling Curve

TYPE hilbert_sfc
 INTEGER :: ncell,
 INTEGER, DIMENSION(:), POINTER :: icell
 INTEGER, DIMENSION(:), POINTER :: rank
 INTEGER :: ilocal, ncell_local
END TYPE

icell = i + (j-1)nx + (k-1)nxny

total particle number / number of ranks = particle count per rank

Traverse curve, counting particles until particle count per rank is reached.
Assign associated grid space to rank 0, repeat for next rank and so on.

Every process has an identical copy of the SFC.
Every rank knows which parts of the sfc are managed
by other ranks.

The local grid is a 3d array, representing the smallest cuboid that encloses
the space traversed by the section of sfc assigned to the rank.

Boundary Communications

1 0 2

5

5

3

6 7

4

EPOCH uses MPI_SENDRECV

è0, ç7
è1, ç6
è2, ç5
...

Cannot rely on this regular arrangement
for space filling curve approach.

For example, rank 4 might have more neighbours
on the left than on the right.

Boundary Communications

5 4

A rank’s local grid has two types of boundary cell.

External, those cells that are controlled by
neighbouring ranks.

Internal, those cells that are external boundary cells
for neighbouring ranks.

TYPE cell_data
 INTEGER :: size, count
 INTEGER, DIMENSION(:), POINTER :: icell
END TYPE cell_data

TYPE neighbour_comms
 INTEGER :: size, count
 INTEGER, DIMENSION(:), POINTER :: rank
 TYPE(cell_data), DIMENSION(:), POINTER :: cell_list
END TYPE neighbour_comms

TYPE(neighbour_comms), POINTER :: sfc_neigh_ext, sfc_neigh_int

Boundary Communications
For an arbitrary list of neighbours, MPI_SENDRECV
will deadlock, so instead...

for each neighbour in sfc_neigh_ext

MPI_IRECV field data for all external boundary cells

MPI_ISEND field data for all internal boundary cells
for each neighbour in sfc_neigh_int

MPI_WAITALL

Could also do MPI_ISEND then MPI_RECV or
MPI_ISSEND then MPI_RECV.

Particle Boundary Communications
After each particle push, every process checks if any particles have moved
outside the local grid.

How particle departures are handled depends on whether any particles have
travelled beyond the neighbouring local grids, which can be determined from
the hilbert_sfc structure.

Once each process knows how many particles it will be receiving and from
where (i.e., which process rank), it can then proceed with MPI_IRECV followed
by MPI_ISEND.

Second point is not an issue during particle push iterations due to cfl condition,
but particles might well need to be communicated beyond neighbours whenever
a rebalancing is performed.

MPI Comms Initial Balance Only
setup time, push time

Balance every 100 iterations
setup time, push time

irecv, isend 00:18, 13:03 00:18, 13:03

isend, recv 00:18, 12:58 00:18, 12:57

issend, recv 00:18, 12:56 00:18, 13:02

Domain now consists of 64×64×64 cells and simulation runs for 0.05 s (3490 timesteps).
c_part_shift = true with no particle reordering, still using one node.

For minEPOCH3D SoA this takes 00:01 (setup) and 11:26 (push) using Cray compiler.

Particle Load Balancing

Compared to SoA, time lost during boundary communications, specifically when each rank updates the
field in the external boundary cells of a neighbouring rank.

Setup time is the time between start of application
and the start of the particle push loop.

Push time is the time spent in the particle push loop.

Non-uniform Particle Distribution

ρ = ρmax e
−(xl+yl+zl)/ρ0 + e−(xr+yr+zr)/ρ0"# $%

xl (x) = x − 1
4
x max

"

#
$

%

&
'
2

zl (z) = z− 1
2
zmax

"

#
$

%

&
'
2

yl (y) = y− 1
2
ymax

"

#
$

%

&
'
2

Particle number peaks (~600) at the centres of the left and right halves of grid.
Around 1.1 million particles in total.

Still two species of particles streaming in opposite directions,
but concentrated into two density peaks.

Uniform distribution had 4 particles per cell over the entire grid.

Non-uniform Particle Distribution

Particle and Field
Energies

Start 3.42e-2, 0.0
End 2.57e-2, 8.29e-3

With initial particle balance only,
simulation finishes in ~ 19 mins.

Push time drops to below 10 min if
balance done every 100 iterations.

MPI Comms Initial Balance Only
setup time, push time

Balance every 100 iterations
setup time, push time

isend, recv 06:25, 12:53 06:23, 08:26

For minEPOCH3D SoA this takes 05:34 (setup) and 10:16 (push)
using Cray compiler.

Summary and Conclusions
SoA with particle sorting shows performance improvement
over linked list – 30% (Cray), 15% (Intel)

Vectorisation can improve performance further (~ 9%), but
actually SIMD directives not required – automatic
vectorisation that comes with –O2 is sufficient.

Particle balancing appears to be working...

 only periodic bcs supported for fields
 testing required for multiple nodes / other test cases

