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Introducing ARCHER 
Advanced Research Computing High End Resource 
 



Introducing ARCHER 
Cray XC30 MPP,  4920 Compute Nodes  

 Dual Intel Xeon processors (Ivy Bridge), 24 cores, 64 GB 
 
Dragonfly topology 

 rank 1: intra-chassis, sixteen 4-node blades (Aries interconnect) 
 rank 2: intra-group (two cabinets per group) 
 rank 3: optical, inter-group (13 groups make up ARCHER) 

 
Tests conducted on 2-cabinet Test Development Server 

 Private to EPCC, minimises resource contention. 
 
ARCHER supports three programming environments  

 Cray (v8.3.7), Intel (v14.0.4) and gnu (v4.9.2) running on CLE v5.1 OS 



minEPOCH3D  
Based on EPOCH v4.4.1 and contains built-in two stream 
test case involving around 2 million evenly-distributed particles. 
 
Domain is cube of side 5×105, partitioned over 50×50×50 cells and 2×3×4 
cores (one ARCHER node). Periodic BCs. 
 
Simulation runs for 0.15 s,  one time step = 18.3 µs.  
 
Total particle and field energies recorded every time step (8190). 
 
Particles stored within linked list. 
 
Two stream test case is two species of 500 000 particles (~4 particles per 
cell), electrons and positrons, travelling in opposing directions. 
Particle shape function is bspline3. 
 
 
 
 



Linked List  
TYPE(particle_species), POINTER :: species_list

TYPE particle_species
  TYPE(particle_species), POINTER :: next, prev
  TYPE(particle_list) :: attached_list
  ...
END TYPE particle_species

TYPE particle_list
  TYPE(particle) :: head
  ...
END TYPE particle_list

TYPE particle
  TYPE(particle), POINTER :: next, prev
  REAL(num), DIMENSION(3) :: pos, mom
  REAL(num), :: mass, weight, charge
END TYPE particle_list

 
 



Array of Structures  
TYPE particle_data
  INTEGER(i8) :: size, count
  TYPE(particle), DIMENSION(:), POINTER :: part_list
END TYPE particle_data

TYPE particle
  TYPE(vector) :: pos, mom
  REAL(num) :: mass, weight, charge
  LOGICAL :: live
END TYPE particle_list

TYPE vector
  REAL(num) :: x, y, z
END TYPE vector

REAL(num), PARAMETER :: partlist_size_multiplier = 1.0_num
INTEGER(i8), PARAMETER :: partlist_size_min = 100

LOGICAL, PARAMETER :: c_part_shift = .FALSE.

Introduced a live field, which indicates if a particular array position is occupied by a real particle. For example, if ith particle leaves 
subdomain, live(i) is set to false. However, live is only used when c_part_shift=false, otherwise particles to the right of escaped 
particle are simply shifted one space to the left. 



Structure of Arrays  
TYPE particle_data
  INTEGER(i8) :: size, count
  TYPE(vector), DIMENSION(:), POINTER :: pos, mom
  REAL(num), DIMENSION(:), POINTER :: mass, weight, charge
  LOGICAL, DIMENSION(:), POINTER :: live
END TYPE particle_data

live array indicates if particular array position is occupied by a 
particle, only used if c_part_shift = .false.



Performance (data structures) 

Particle Data 
Structure 

Run Time 
Average 
(min:sec) 

Linked List  17:28  

Array of Structures 14:22  

AoS (part shift off)  14:16 

Structure of Arrays 14:26 

SoA (part shift off) 14:23 

Cray-compiled EPOCH Code 

~18% 
improvement for 
AoS or SoA 
 
<1% increase in 
performance 
when particle 
shift turned off 
 



Particle Reordering 
Sort particles such that adjacent particles in lists are either located 
within same cell or within neighbouring cells. 
 
Use a 1D index to reference each cell in a 3D section of domain. 
 
 
How frequently should particle arrays be sorted?

INTEGER, PARAMETER :: sort_partlist_stride = 10
 
Every 10 time steps, sort the particle_data arrays according 
to particle location, expressed as a 1D grid cell index.

icell = i + (j-1)nx + (k-1)nxny



Particle Reordering (Simple Sort) 
! determine which cells are occupied and
! calculate 1D cell index for each particle
DO ip = 1, count
  ic = get_cell_index(part_data%pos(ip))
  cell_occupied(ic) = .TRUE.
  part_cell(ip) = ic
ENDDO

! a sorted list is constructed by iterating
! through the cells in order
DO ic = 1, ncell
  IF (cell_occupied(ic)) THEN
    DO ip = 1, count
      IF (ic == part_cell(ip)) THEN
        ! get particle at position ip in part_data
        ! append that particle to part_data_sorted
      ENDIF
    ENDDO
  ENDIF
ENDDO

Note, ncell for a given rank may change as a result of load balancing. 
This naive sorting algorithm is used to understand the performance 
benefit of sorting the particles compared to that introduced by the 
sorting algorithm itself, see next slide. 
 



Particle Reordering (Quick Sort) 
DO ip = 1, count
  ic = get_cell_index(part_data%pos(ip))
  part_cell(ip) = ic
  part_index(ip) = ip
ENDDO

! part_cell is sorted according to ic
! identical rearrangement applied to part_index
CALL qsort_partlist(part_cell, part_index, count2)

DO ip = 1, count
  ip2 = part_index(ip)
  IF (ip2 >= 1 .AND. ip2 <= count) THEN
    ! get particle at position ip2 in part_data
    ! append that particle to part_data_sorted
  ENDIF
ENDDO



AoS Performance (sorting techniques) 

Stride Basic Quick 

1 >40:00 13:20 

10 25:13 12:16  

100 13:31 12:15 

1000 13:02 12:53 

Quick sort with stride of 10-100 seems to be optimal setting for quick sort. 

Cray-compiled EPOCH Code (part shift on) 

~60% increase in runtime when particle shift turned off. 
 



SoA Performance (sorting techniques) 

Stride Basic Quick 

1 >40:00 12:57 

10 20:16 12:07  

100 13:16 12:07 

1000 12:52 12:45 

Quick sort always completes in a reasonable time and SoA is slightly faster than AoS. 

Cray-compiled EPOCH Code (part shift on) 



Particle Reordering (AoSoA)  
! INTEGER, PARAMETER :: sort_partlist_stride = 1

TYPE particle_species
  ! an element for every cell (one rank ~5000 cells)
  TYPE(particle_list), DIMENSION(:), POINTER :: part_list
  ...
END TYPE particle_species

TYPE particle_list
  TYPE(particle_data), POINTER :: part_data
END TYPE particle_list

TYPE particle_data
  INTEGER(i8) :: size, count
  TYPE(vector), DIMENSION(:), POINTER :: pos, mom
  REAL(num), DIMENSION(:), POINTER :: mass, weight, charge
  LOGICAL, DIMENSION(:), POINTER :: live
END TYPE particle_data



Performance (Cray vs Intel) 
Particle Data 

Structure 
Cray Intel 

minEPOCH3D 17:28 12:42 

AoS (f) 14:16 12:33  

SoA (f) 14:22 12:19 

AoS (qs, 100, t) 12:15 11:14 

SoA (qs, 10, t) 12:07 10:53  

AoSoA (t) 12:33 11:12 

The names of the particle data structures have 
annotations (see brackets). 
 
f and t indicate c_part_shift=false,true; 
qs denotes quicksort; the number gives the 
sorting stride. 
 
For AoSoA, having c_part_shift=false, 
increases run time by one minute. 
 



Performance (Cray vs Intel) 

For Cray-compiled code moving to AoS/SoA gives ~18% decrease in runtime, 
if particle sorting is also applied then improvement is roughly 30%. 

However, for Intel-compiled code, performance improvement is not as 
impressive. Changing data structures only gives ~2%, although particle 
sorting increases this figure to 15%. 

Sorting reduces the number of cache misses. 
 



Particle Push Vectorisation 
Incorporated Bob Bird’s vectorisation of 2D particle push within minEPOCH3D SoA 
version. 
 
Particle push loop is split in three. 
 
Loop 1: calculate particle positions at half time step. 
 
Sort particles according to global cell index – done using bin sort. 
 
Loop 2: update momentum and calculate particle positions at full time step. 
 
Optional, sort particles according to index of cell occupied at next half time step. 
 
Loop 3: calculate currents – done within a three-deep nested loop structure 
(one for each dimension). 

concentrated our vectorisation efforts within the nested loop structure within loop 3 
 



Particle Push Vectorisation 

Intel Compiler v15.0.2.164 used to apply 
vectorisation/data alignment. 
 
 

!DIR$ VECTOR ALIGNED
DO iz = zmin, zmax
  DO iy = ymin, ymax
!DIR$ VECTOR ALIGNED
!DIR$ SIMD PRIVATE(...)
    DO ix = xmin, xmax
      jx(...) += jxh(...)
      jy(...) += jyh(...)
      jz(...) += jzh(...)
    ENDO
  ENDDO
ENDDO

Adjust the vectorisation by changing the 
position of SIMD directive. 

Important to pre-calculate jxh variables  
immediately before loop to avoid 
exaggeration of final energies. 

Aligned on 64 byte arrays. 
 



Particle Push Vectorisation 
Particle Push 

Type 
Runtime Final Particle 

Energy 
Final Field 

Energy 

SoA 10:53 8.51 0.0445 

Split Only 12:54 8.51 0.0445 

Data Alignment 10:51 8.51 0.0445 

Outer (z) SIMD 10:09 10.097 1.258 

Middle (y) SIMD 10:10 10.065 1.253 

Inner (x) SIMD 10:17 23.708 1.888 

No pre-calculation of jxh etc 



Particle Push Vectorisation 
Particle Push 

Type 
Runtime Final Particle 

Energy 
Final Field 

Energy 

SoA 10:53 8.51 0.0445 

Split Only 12:54 8.51 0.0445 

Data Alignment 10:51 8.51 0.0445 

Outer (z) SIMD 10:09 8.51 0.0445 

Middle (y) SIMD 10:10 8.51 0.0445 

Inner (x) SIMD 10:17 8.51 0.0445 

Thanks to Adrian Jackson, EPCC 



Particle Load Balancing 
Currently, the simulation is divided such that each rank 
handles an similar-sized portion of the global grid. 
 
Instead, we could divide workload such that each rank 
handles approximately the same number of particles. 
  
Hence, ranks may be assigned grid spaces that vary in 
volume and are not necessarily cuboid.  



Hilbert Space Filling Curve 

Use a 1D data structure to 
capture the coordinates of every 
cell within a 3D space. 

Space filling curve can be plotted 
using a recursive algorithm. 



Hilbert Space Filling Curve 

TYPE hilbert_sfc
  INTEGER :: ncell, 
  INTEGER, DIMENSION(:), POINTER :: icell
  INTEGER, DIMENSION(:), POINTER :: rank
  INTEGER :: ilocal, ncell_local
END TYPE

icell = i + (j-1)nx + (k-1)nxny

total particle number / number of ranks = particle count per rank

Traverse curve, counting particles until particle count per rank is reached. 
Assign associated grid space to rank 0, repeat for next rank and so on. 

Every process has an identical copy of the SFC. 
Every rank knows which parts of the sfc are managed 
by other ranks. 

The local grid is a 3d array, representing the smallest cuboid that encloses 
the space traversed by the section of sfc assigned to the rank. 



Boundary Communications 

1 0 2 

5 

5 

3 

6 7 

4 

EPOCH uses  MPI_SENDRECV
 
è0, ç7 
è1, ç6 
è2, ç5 
... 

Cannot rely on this regular arrangement 
for space filling curve approach. 

For example, rank 4 might have more neighbours 
on the left than on the right. 
 



Boundary Communications 

5 4 

A rank’s local grid has two types of boundary cell. 
 
External, those cells that are controlled by 
neighbouring ranks. 
 
Internal, those cells that are external boundary cells 
for neighbouring ranks. 

TYPE cell_data
  INTEGER :: size, count
  INTEGER, DIMENSION(:), POINTER :: icell
END TYPE cell_data

TYPE neighbour_comms
  INTEGER :: size, count
  INTEGER, DIMENSION(:), POINTER :: rank
  TYPE(cell_data), DIMENSION(:), POINTER :: cell_list
END TYPE neighbour_comms

TYPE(neighbour_comms), POINTER :: sfc_neigh_ext, sfc_neigh_int



Boundary Communications 
For an arbitrary list of neighbours, MPI_SENDRECV 
will deadlock, so instead...

for each neighbour in sfc_neigh_ext

MPI_IRECV field data for all external boundary cells 

MPI_ISEND field data for all internal boundary cells 
for each neighbour in sfc_neigh_int

MPI_WAITALL

Could also do MPI_ISEND then MPI_RECV or 
MPI_ISSEND then MPI_RECV.



Particle Boundary Communications 
After each particle push, every process checks if any particles have moved 
outside the local grid.  
 
How particle departures are handled depends on whether any particles have 
travelled beyond the neighbouring local grids, which can be determined from 
the hilbert_sfc structure. 
 
Once each process knows how many particles it will be receiving and from 
where (i.e., which process rank), it can then proceed with MPI_IRECV followed 
by MPI_ISEND.

Second point is not an issue during particle push iterations due to cfl condition, 
but particles might well need to be communicated beyond neighbours whenever 
a rebalancing is performed. 
 



MPI Comms Initial Balance Only 
setup time, push time 

Balance every 100 iterations 
setup time, push time 

irecv, isend 00:18, 13:03 00:18, 13:03 

isend, recv 00:18, 12:58 00:18, 12:57 

issend, recv 00:18, 12:56 00:18, 13:02 

Domain now consists of 64×64×64 cells and simulation runs for 0.05 s (3490 timesteps). 
c_part_shift = true with no particle reordering, still using one node. 
 
For minEPOCH3D SoA this takes 00:01 (setup) and 11:26 (push) using Cray compiler. 

Particle Load Balancing 

Compared to SoA, time lost during boundary communications, specifically when each rank updates the 
field in the external boundary cells of a neighbouring rank.  

Setup time is the time between start of application 
and the start of the particle push loop. 

Push time is the time spent in the particle push loop. 



Non-uniform Particle Distribution 
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Particle number peaks (~600) at the centres of the left and right halves of grid. 
Around 1.1 million particles in total. 

Still two species of particles streaming in opposite directions, 
but concentrated into two density peaks. 

Uniform distribution had 4 particles per cell over the entire grid. 



Non-uniform Particle Distribution 

Particle and Field 
Energies 

Start 3.42e-2, 0.0 
End 2.57e-2, 8.29e-3 

With initial particle balance only, 
simulation finishes in ~ 19 mins. 
 
Push time drops to below 10 min if 
balance done every 100 iterations. 

MPI Comms Initial Balance Only 
setup time, push time 

Balance every 100 iterations 
setup time, push time 

isend, recv 06:25, 12:53 06:23, 08:26 

For minEPOCH3D SoA this takes 05:34 (setup) and 10:16 (push) 
using Cray compiler. 



Summary and Conclusions 
SoA with particle sorting shows performance improvement  
over linked list – 30% (Cray), 15% (Intel) 
 
Vectorisation can improve performance further (~ 9%), but  
actually SIMD directives not required – automatic 
vectorisation that comes with –O2 is sufficient. 
 
Particle balancing appears to be working... 

 only periodic bcs supported for fields 
 testing required for multiple nodes / other test cases 

 


