
Investigations into OpenMP with EPOCH

Paddy Gillies

paddy.gillies@awe.co.uk

www.awe.co.uk

© British Crown Owned Copyright 2015/AWE

2

Why OpenMP?

 Many-core is here

 Performance through increased core count, not clock

 MPI won’t keep scaling

 Increasing MPI ranks impacts load-balance

 Xeon Phi: 60+ cores, 240+ threads

 GPUs: 1000s of threads

OpenMP

 Each process spawns a set of threads

 Threads of a single process share the same data

 Use in EPOCH for any loop over particles

 Particle ‘push’

 Particle boundaries

 Sort

 Current deposition needs special treatment

3

4

First implementation

 Add OpenMP pragmas to

particle push

 Need to manage current

deposition

 Use private copy of current

array

 Sum over threads after

particle loop

$!OMP PARALLEL DO

DO

ipart=1,species(i)%npart

...

END DO

!$OMP END PARALLEL DO

 Also add to particle boundaries and sort

 Limited by data movement

5

0

5

10

15

20

25

30

35

40

45

Ref 1 2 4 8 16 32 64

OpenMP Threads

T
im

e
 (

s
) Other

Sort

PBCS

Push

MPI ranks x OpenMP threads=64

Dual 16 core 2.3GHz Intel E5-2698v3 with hyper-threading, Cray compiler

Scaling issues

 Works well for small

numbers of threads

 Particle push scales well

 Performance becomes

dominated by particle

boundaries and sort

6

0

5

10

15

20

25

30

35

40

45

Ref 1 2 4 8 16 32 64

T
im

e
 (

s
)

OpenMP Threads

Push PBCS Sort Other

7

Colouring implementation

 Want to improve scaling

 Still need to avoid conflicts in current deposition

 Use a colouring scheme

 Particles in tiles of the same colour are pushed at the

same time

 Each thread pushes separate tiles

8

Colouring scheme

 Grid is divided into tiles

 Tiles are ‘coloured’ so that

like-coloured tiles are

separate

 Particles are sorted by cell

Colouring scheme

 Process each ‘colour’ in

turn

 Each thread processes

a different tile

 Guarantees that

different threads do not

access same part of

grid

9

4 threads

Colouring scheme

 Process each ‘colour’ in

turn

 Each thread processes

a different tile

 Guarantees that

different threads do not

access same part of

grid

10

11

Colouring implementation

DO icol=1,n_colours

$!OMP PARALLEL DO PRIVATE(istart,iend,ipart)

DO itile=icol,ntiles,n_colours

istart=tile_start(itile)

iend=tile_end(itile)

DO ipart=istart,iend

...

END DO

END DO

!$OMP END PARALLEL DO

END DO

Sort and Particle boundaries

 Both change the particle data

 Based on particle position

 Can merge these routines

 The colouring scheme can be used here

 Count particles in each cell

 Calculate particles in each tile

 Send & receive particles from neighbour ranks

 For each colour in turn

 Place particles in their new location in the particle array

12

13

0

5

10

15

20

25

30

Ref 1 2 4 8 16 32 64

T
im

e
 (

s
)

OpenMP Threads

Push PBCS Sort Other

MPI ranks x OpenMP threads=64

Dual 16 core 2.3GHz Intel E5-2698v3 with hyper-threading, Cray compiler

 Improved scaling

to large numbers

of threads

 Better particle

boundary and

sort scaling

14

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64

T
im

e
 (

s
)

OpenMP threads

Loop-based Colouring

 Colouring

scheme

required for

large number

of threads

 Will help load-

balance & I/O

Conclusions

 Many-core is here

 MPI scaling is limited

 OpenMP is one way to use many-core

 Efficient OpenMP method developed for EPOCH

15

