
Investigations into OpenMP with EPOCH

Paddy Gillies

paddy.gillies@awe.co.uk

www.awe.co.uk

© British Crown Owned Copyright 2015/AWE

2

Why OpenMP?

 Many-core is here

 Performance through increased core count, not clock

 MPI won’t keep scaling

 Increasing MPI ranks impacts load-balance

 Xeon Phi: 60+ cores, 240+ threads

 GPUs: 1000s of threads

OpenMP

 Each process spawns a set of threads

 Threads of a single process share the same data

 Use in EPOCH for any loop over particles

 Particle ‘push’

 Particle boundaries

 Sort

 Current deposition needs special treatment

3

4

First implementation

 Add OpenMP pragmas to

particle push

 Need to manage current

deposition

 Use private copy of current

array

 Sum over threads after

particle loop

$!OMP PARALLEL DO

DO

ipart=1,species(i)%npart

...

END DO

!$OMP END PARALLEL DO

 Also add to particle boundaries and sort

 Limited by data movement

5

0

5

10

15

20

25

30

35

40

45

Ref 1 2 4 8 16 32 64

OpenMP Threads

T
im

e
 (

s
) Other

Sort

PBCS

Push

MPI ranks x OpenMP threads=64

Dual 16 core 2.3GHz Intel E5-2698v3 with hyper-threading, Cray compiler

Scaling issues

 Works well for small

numbers of threads

 Particle push scales well

 Performance becomes

dominated by particle

boundaries and sort

6

0

5

10

15

20

25

30

35

40

45

Ref 1 2 4 8 16 32 64

T
im

e
 (

s
)

OpenMP Threads

Push PBCS Sort Other

7

Colouring implementation

 Want to improve scaling

 Still need to avoid conflicts in current deposition

 Use a colouring scheme

 Particles in tiles of the same colour are pushed at the

same time

 Each thread pushes separate tiles

8

Colouring scheme

 Grid is divided into tiles

 Tiles are ‘coloured’ so that

like-coloured tiles are

separate

 Particles are sorted by cell

Colouring scheme

 Process each ‘colour’ in

turn

 Each thread processes

a different tile

 Guarantees that

different threads do not

access same part of

grid

9

4 threads

Colouring scheme

 Process each ‘colour’ in

turn

 Each thread processes

a different tile

 Guarantees that

different threads do not

access same part of

grid

10

11

Colouring implementation

DO icol=1,n_colours

$!OMP PARALLEL DO PRIVATE(istart,iend,ipart)

DO itile=icol,ntiles,n_colours

istart=tile_start(itile)

iend=tile_end(itile)

DO ipart=istart,iend

...

END DO

END DO

!$OMP END PARALLEL DO

END DO

Sort and Particle boundaries

 Both change the particle data

 Based on particle position

 Can merge these routines

 The colouring scheme can be used here

 Count particles in each cell

 Calculate particles in each tile

 Send & receive particles from neighbour ranks

 For each colour in turn

 Place particles in their new location in the particle array

12

13

0

5

10

15

20

25

30

Ref 1 2 4 8 16 32 64

T
im

e
 (

s
)

OpenMP Threads

Push PBCS Sort Other

MPI ranks x OpenMP threads=64

Dual 16 core 2.3GHz Intel E5-2698v3 with hyper-threading, Cray compiler

 Improved scaling

to large numbers

of threads

 Better particle

boundary and

sort scaling

14

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64

T
im

e
 (

s
)

OpenMP threads

Loop-based Colouring

 Colouring

scheme

required for

large number

of threads

 Will help load-

balance & I/O

Conclusions

 Many-core is here

 MPI scaling is limited

 OpenMP is one way to use many-core

 Efficient OpenMP method developed for EPOCH

15

