Work Update - July

Alice Fayter Department of Chemistry, University of Warwick, UK

Introduction

- Ice formation and growth can be a serious problem
- Little understood about its mechanism
- This work investigates the ice growth process and mechanism
 of action of IRI active compounds
- Goal to characterise ice structures and how they are affected by these compounds
- Using solid state NMR and XRD
- Increased understanding will help improvement of techniques
 for prevention of ice formation
- 3 key macroscopic effects associated with growth studied: DIS, IRI and TH

Aims so far

- Characterise the changes in ice structure upon addition of antifreezes.
- Investigate what we can learn about the mobility of water and how it is affected by antifreezes using solid state NMR – studying relaxation rates.
- To assess structural changes upon water freezing via X-ray studies.
- Assay protective activity as well as toxicity of PEG/PVA etc on different proteins.
- Do the antifreezes have an optimum concentration/limit

Safranin O

Nucleation and SPLAT assays

5 different concentrations compared to PBS standard.

A) 1 mg/mL Safranin O, B) 0.1 mg/mL Safranin O, C) 0.05 mg/mL Safranin O, D) 0.02 mg/mL Safranin O, E) 0.01 mg/mL Safranin O F) PBS standard.

Solid State NMR

Idea: Understand how various antifreezes interact with ice.

- Relaxation rates?
- Used TTMSS (reference) and methanol (internal thermometer).
- Initial studies of different antifreezes – tried AFP and PEG also but the peaks were difficult to analyse so data not trustworthy

Solid State NMR

Weren't sure of whether what we observed would change so decided on overnight studies

- Are there T1 and T2 differences over time?
- Effect of temperature
- Do these antifreezes have an optimum concentration?

Solid State NMR explanations & more ideas

- Difficult to study
- Still working on negative controls as PEG has too extreme peaks and NaCl gives bizarre results – trying phenosafranin
- We have had problems spinning the liquid samples (unsure why)
- There is definitely an effect
- Would like to do 2D experiments on antifreezes How does the motion change when at room temp and when frozen?
- Differences between -20 and -30 experiments.

WAXS so far

- WAXS analysis of water diffraction patterns from -10 to 10 degrees and the effect of PVA, PEG
- Cubic ice → Hexagonal ice observed (not shown)

Cooling comparisons (-30 °C)

Cooling comparisons (-30 °C) Magnification

Labels for peaks based on Salzmann 2012

WAXS explanations (?)

Hypothetical mechanisms of action

- Direct ice/antifreeze interaction
- Antifreeze partitions into the liquid layer

Possible reasons for peak splitting:

- Deformation of hexagonal ice by surface active components
- Potentially artifacts form
- Crystallisation of a solute but do the peaks not correspond to the known crystalline forms of solutes in systems studied
- Another ice polymorph ice IV/III?
- In structure changes due to pressure build-up due to volume expansion during water-ice transition.

Recrystallisation?

- MilliQ: intensity disappears from 0 to 1
 °C, then reappears (2
 °C).
- PVA: intensity reduces as temperature increases but no disappearance.
- Need to identify the peaks as the spectra for MilliQ at 2 and 3 °C doesn't look like the normal I_h or I_c spectra.

Protein expression - Gels

- Successful expression generally
- GFP For freeze thaw studies
- AFP (I and III) to compare to PEG/PVA etc
- Optimisation of AFP expression (difficult to get good yields)

Freeze Thaw Assay Results

GFP Fluorescence (8 FT cycles)

Freeze Thaw Assay Results

Insulin aggregation (12 FT cycles)

VV

What to do next

- Continue with NMR
- Continue WAXS and then move on to SAXS using PBS to compare results directly with what we see from SPLAT assays
- Analyse all the data to see what it means
- Look at ice nucleating compounds (Microarrays)
- AFP expression optimisation

Potentials:

- Raman
- Viscosity studies
- Micro CT Imaging
- Phospholipids

Acknowledgements

@LabGibson

www.warwick.ac.uk/go/gibsongroup