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Very Slow 
Morphological 

Responses 

• Thermoresponsive polymers are an important class 
of “smart” stimuli-responsive materials . 

• They exhibit a lower or upper critical solution 
temperature (LCST or UCST) whereby the polymer in 
solution under goes a phase transition, which alters 
its solubility in response to temperature changes. 

• These materials have been used extensively in the 
literature for numerous potential applications 
including drug delivery, improved cellular uptake, 
injectable hydrogels for tissue engineering, DNA and 
protein conjugates, enhanced oil recovery and for 
the detection of biomarkers to name a few. 

• pNIPAM is one of the most studied 
thermoresponsive polymers, which exhibits a 
lower critical solution temperature (LCST) close to 
body temperature. 
 

• Some concerns exist concerning its slow 
reversibility (hysteresis) in certain systems. 
 

•  This hysteresis results in slow morphological 
responses to occur when pNIPAM is used as the 
responsive block. 

Slow 
Reversibility 

• Herein, we design micelles with tunable aggregation 
numbers (Nagg) and core hydrophobicities, in order to 
determine the effects of core hydration and chain 
confinement on thermal hysteresis.  This was achieved 
using varying compositions of (pnBA-b-DMA) as the core 
block and pNIPAM as the thermoresponsive corona. 
 

• Using the same micellar cores the effects of  changing the 
chemistry of the corona block on thermal hysteresis was 
investigated. Three  more distinct thermoresponsive  
coronas were investigated, namely (pDEAm), (pDEGMA) 
and (pOEGMA). 

Thermoresponsive 

Corona 

Non-responsive 

Core 

H bonding ability? 

Tg? 

Brush or linear? 

Hydrophilicity? 

Composition? 

 

Hydration? 

0

0.2

0.4

0.6

0.8

1

1.2

10 15 20 25 30 35 40

N
o

rm
a

li
z
e

d
 

T
ra

n
s

m
it

ta
n

c
e
 

Temperature/ °C 

Reversible? 

 

Irreversible? 

 

Hysteresis? 

Solvent Switch

into H2O

1

2

3

4

5

50% nBA

70% nBA

80% nBA

90% nBA

100% nBA

Increasing

Nagg

A B

1-5

MCTA

Increasing Chain 
Confinement 

• Diblock Copolymers were 
synthesized by RAFT 
polymerization. 
 

• The copolymers were self-
assembled into micelles 
and characterized by 
multi-angle SLS and DLS. 
 

• ↑nBA → ↑Nagg. 

• Micelles with pNIPAM coronas were analyzed by 
multi-angle SLS and DLS at various temperatures 
below the thermal transition temperature. 
 

• ↑Temperature → Nagg and Rcore remain the same. 
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• This occurred at temperatures well below the cloud 

point  
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•  MicroDSC 

  Turbidimetry 
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• The micelles cloud point was 
assessed. 
 

• ↑nBA and ↑Nagg → cloud point 
remained the same. 

• ↑nBA and ↑Nagg → ↑Hysteresis. 
 

• Hysteresis caused by either an increase in 
chain entanglement at high Nagg (A) or a 
decrease in core hydration at high 
hydrophobicity (B). 
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• Micelles with longer pNIPAM 
coronas had less hysteresis.  
 

• Differences in hysteresis across 
the series was a result of 
differences in the hydration of 
the micellar cores. 
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pDEAm 

pNIPAM 
Hydrogen bond donor? 

Hydrogen bond acceptor? 

• Thermal hysteresis in pNIPAM systems has been widely 
attributed to pNIPAM’s ability to form hydrogen bonds 
between polymer chains in the globular state above the 
transition temperature. 

vs. 

• Micelles with pDEAm coronas  were investigated. 
 

• pDEAm micelles had a lower hysteresis than the 
pNIPAM micelles on the whole  → no  polymer-
polymer H bonding. 
 

• A hysteresis was introduced in pDEAm micelles with 
very hydrophobic cores. 

pNIPAM - Linear 

pDEGMA - Short Brush 

pOEGMA - Long Brush 

• Micelles with short (pDEGMA) and long (pOEGMA) brush side-
arms were investigated. 

 

• At low Nagg, the hysteresis of the 
pDEGMA micelles was minimal. 
 

• At high Nagg pDEGMA micelles 
showed irreversible transistions. 

• pOEGMA micelles also showed irreversible 
transisitons. 
 

• This behavior has been attributed to the 
increased entanglement of the brush-like chains, 
which prevents the rehydration of the micelles 
upon cooling. 
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