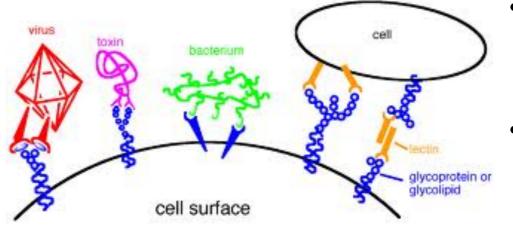


Glycopolymer-Lectin Interactions and Inhibition of Pathogens using **Multivalent Scaffolds**

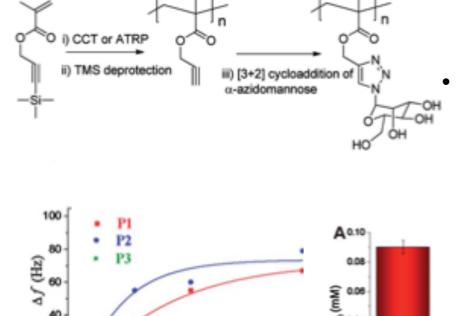
Sarah-Jane Richards, Matthew I. Gibson


www2.warwick.ac.uk/go/gibsongroup

S-J.Richards@warwick.ac.uk

Background

Protein-carbohydrate interactions mediate a multitude of critical biological recognition processes.¹ The proteins responsible for deciphering this information are termed lectins.²

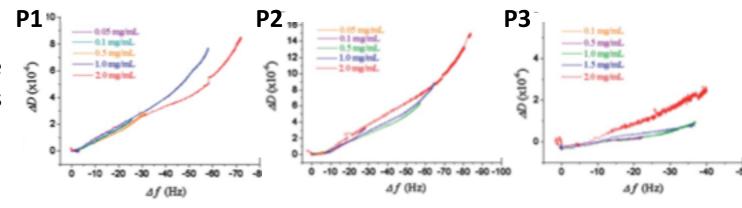


- Polymers with pendent carbohydrate moieties (glycopolymers) interact with lectins and have demonstrated binding affinities several orders of magnitude greater than a single carbohydrate.³
- Interference at this early stage is known as anti-adhesion therapy and does not kill the pathogen. Importantly, it prevents binding and hence internalisation which markedly reduces the chance of becoming resistant.⁴

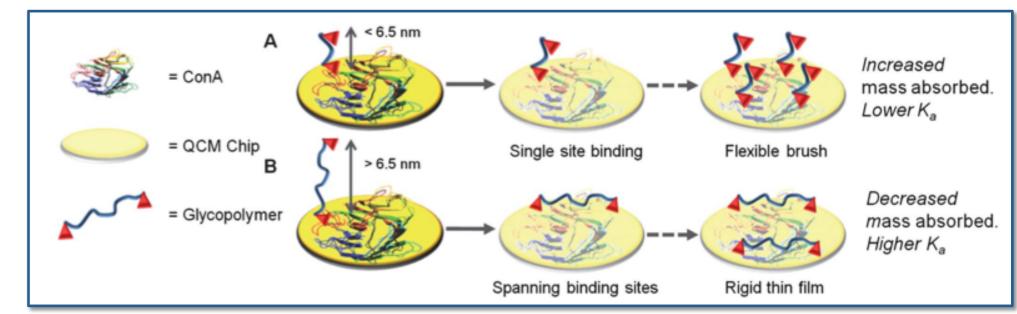
Comparison of Surface Binding with Inhibitory Activity

Glycopolymer-Lectin Interactions

The nature of the interactions between glycopolymers and lectins, and the structural features necessary to obtain high-affinity materials are not fully understood.² In this study, we probed multivalent interactions in the α mannose - Concanavalin-A (ConA) pairing:



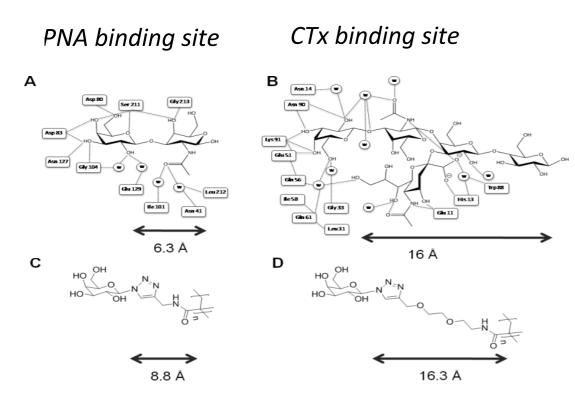
- Post-polymerisation Modification: α -D-mannose was 'clicked-on' to a poly-(propargyl methacrylate) backbone.
- Polymer Chain Lengths: 2 (P1), 6 (P2) and 11 nm
 - Binding inhibition was assessed using Quartz-crystal microbalance with dissipation monitoring (QCM-d) and Fluorescence-linked sorbent assay (FLSA).
 - Higher binding affinity = increased mass of glycoside binding to the lectin surface. This property is used to screen new inhibitors.


Binding Modes

P2 and P3 inhibited ConA 10x more effectively than P1. However, this is in contrast to the QCM studies:

QCM-d also probes the viscoelasticity of films formed on a surface.

Large changes in dissipation (ΔD) indicate a flexible film, whilst small ΔD values suggest a rigid, non-flexible coating: The longer chain polymer (P3) spans the binding site of ConA whereas the shorter polymers (P1/P2) can only bind one site.

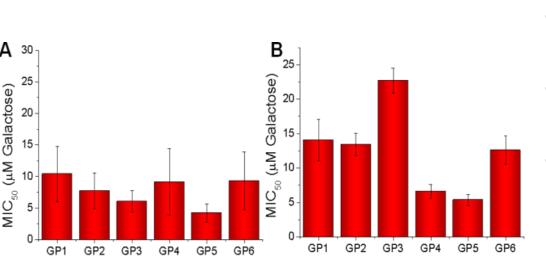

A combination of techniques is required to assess the efficacy of an inhibitor.

Gou, Y.; Richards, S-J.; Haddleton D. M.; Gibson, M. I. Polymer. Chem., 2012

Inhibition of Bacterial Toxins

Bacterial Toxin Binding

The cholera toxin (CTx) secreted by Vibrio cholerae binds glycosides expressed on the cell surface.⁵ Materials with high-affinity and selectivity for these lectins could find applications as anti-adhesive agents.⁴

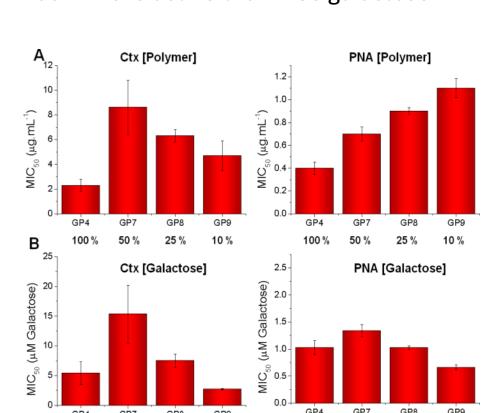


- Probe influence of chain length, carbohydrate density and linker length on binding inhibition.
- Glycopolymer library produced by tandem post - polymerisation modifications.
- Structural biology indicates CTx has deeper binding site than other galactose binding lectins such as Peanut agglutinin (PNA).

Role of Linker Length and Carbohydrate Density Polymers synthesised with ~ 6 Å (short)

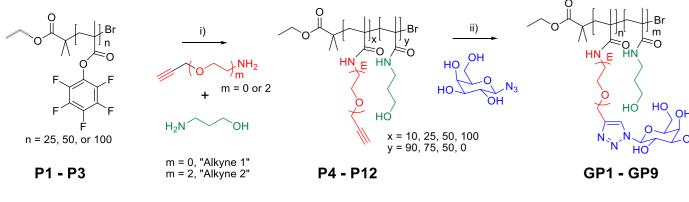
Long Linker

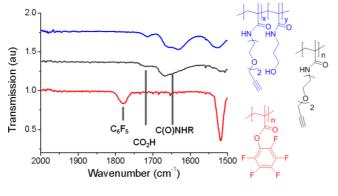
Length and Density


- and 16 Å (long) linkers. Linker length has no effect on PNA
- inhibition (A). Longer linker has 2 – 3 fold lower MIC₅₀ compared to shorter linker on inhibiting CTx (B).
- 100 X more active than free galactose.

Polymers synthesised with 10, 25 and 50 % galactose.

Long Linker


Short Linker


- By mass (A), low galactose densities lead to a relative decrease in binding affinity/inhibitory activity.
- By mole of galactose (B), 10 % and 100 % functionalised polymers are the most active suggesting several features (e.g. sterics and site spanning) contribute to inhibitory activity.

Tandem Post-Polymerisation Modification

'Clickable' units are not compatible with controlled radical polymerisation. Instead, tandem-post polymerisation modification techniques were used.

- β-D-galactose was 'clicked-on' to pendent alkyne moieties.
- Results in biocompatible methacrylamide based (co)polymers.

Poly(pentafluorophenyl methacrylate) for easy modification.

\checkmark Tandem Post-Polymerization ×

Summary

- Tandem post-polymerisation modification allows synthesis of polymers from same chain length distribution.
- Longer linker has better binding site accessibility.
- Carbohydrate density has an effect.
- Inhibitors have to be developed for the binding site.

Richards, S-J.; Jones, M. W.; Hunaban, M. I.; Haddleton, D. M.; Gibson M. I. Angew. Chem Int. Ed., 2012

References

5031.

- C. R. Bertozzi, L. L. Kiessling, Science, 2001, 291, 2357.
- 2. M. Ambrosi, N. R. Cameron, B. G. Davis, Org. Biomol. Chem., 2005, 3, 1593. 3. S. G. Spain, M. I. Gibson, N. R. Cameron, J. Polym. Sci., Part A: Polym. Chem., 2007, 45,
- 4. R. J. Pieters, Med. Res. Rev. 2007, 27, 796.
- 5. B. D. Polizotti, K. L. Kiick, *Biomacromolecules*, **2006**, 7, 483.

Acknowledgements

Matt Gibson Haddleton Group

Gibson Group MOAC Yanzi Gou **EPSRC** Mat Jones

