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Figure 1. Membrane integrity of  Neuro-2a cells after freezing and thawing was improved by addition of  

100 mM trehalose (n=3 with 2 nested replicates, ±SEM; (# P < 0.05 compared to 0 mM trehalose with 

10% Me2SO; * P < 0.05 compared to 0 mM trehalose with 10% Me2SO + 100 mM trehalose).

Trehalose Incubation Effects

Introduction Discussion
• Trehalose: we found that a 24 h incubation period with 

100 mM trehalose provided the best cryoprotection for 

monolayers stored at -80 °C

Literature Cited

• Mouse neuroblastoma cells (Neuro-2a) 

were plated on collagen coated 24-well 

microtiter plates at 0.5 million cells per 

well in 500 μL of  culture medium 

(Opti-MEM I supplemented with 5.5% 

fetal bovine serum and antibiotics) 

Figure 3.  Trehalose interacting with the bilayer [7].

• When proline was incorporated into the tissues 

of  D. melanogaster was able to survive when 

50% of  its body water was frozen [9]

• High affinity L-proline uptake could provide 

an intracellular pool of  L-proline, which 

serves a distinct metabolic or osmotic role [5]

• Trehalose is thought to 

act by altering or 

replacing the water shell 

that surrounds lipid and 

proteins [6,7]

• Proline: we found that a 24 h incubation period with 

100 mM proline provided the best cryoprotection for 

monolayer cells

• Proline + Trehalose: we found that a [1:1] 100 mM

solution of  trehalose + proline afforded the greatest 

cryoprotection for neuronal cells in a monolayer format

• Growth:  incubation with [1:1] 100 mM trehalose + proline 

solution significantly reduced the growth rate

• Our results suggest that a combination of  solutes may 

be required to both stabilize the cells during the 

freezing process as well as manage signaling pathways 

to prevent apoptosis and down-regulate metabolic 

activity

• Trehalose is a naturally occurring reducer 

of  cell stress, which protects organisms 

from extremes in heat shock and osmotic 

stress [2]

• Proline concentrations were elevated in 

bacteria subjected to osmotic stress during 

growth [4]

• Prior studies in our laboratory have shown trehalose to 

increase the membrane integrity of  monolayer human 

hepatoma cells (HepG2) during freezing [1]

• We hypothesized that compatible osmolytes and 

protective sugars, such as trehalose and proline, 

would be beneficial in the cryopreservation of  

neuroblastoma cell monolayers

• Trehalose is moved from the extracellular to intracellular 

compartment via endocytosis and intracellular 

accumulation depends on extracellular concentration [3]

Additional Information

• After 2 h the culture medium was removed and 

replaced with culture medium containing either:

• Following incubation the medium was removed and 

replaced with freezing buffer composed of  either:

a. Trehalose (0 - 200 mM)

b. Proline (0 - 200 mM)

c. Trehalose/Proline [1:1] (0 - 200 mM)

i. Opti-MEM I, 5.5% FBS and 10% DMSO (a,b,c)

ii. Opti-MEM I, 5.5% FBS, 10% DMSO, and 

100 mM trehalose (a)

iii. Opti-MEM I, 5.5% FBS, 10% DMSO, and 

100 mM proline (b)

iv. Opti-MEM I, 5.5% FBS, 10% DMSO, and 

matched mM solution (c)
• Cells were transiently exposed to the 

respective buffer for 10 minutes, and 

placed into a passive freezing device 

(-1 ºC/min) (Cool Cell MP, BioCision 

Lake Spur, CA), to -80 ºC for 24 h 

• Cells were thawed by addition of  pre-warmed (37 ºC) 

culture medium and incubated for 24 h

• Cell membrane integrity and growth was assessed via 

trypan blue exclusion assay

• Statistics accomplished with one-way ANOVA test 

with HSD post-hoc analysis

Proline Incubation Effects

Trehalose + Proline Incubation Effects
• We found significant differences in 

viability among trehalose 

concentrations (Fig. 1; P < .001) with 

100 mM trehalose inclusion in the 

incubation and freezing buffer 

performing the best (36.7 ±4.5%)

• We found significant differences in 

viability among proline 

concentrations (Fig. 2; P < .001) with 

100 mM proline inclusion in the 

incubation and freezing buffer 

performing the best (35.5 ±4.5%)

• We found significant differences in 

viability among trehalose + proline 

concentrations (Fig. 3; P < .001) with 

112.5 mM of  trehalose + proline 

inclusion in the incubation and 

freezing buffer performing the best 

(52.4 ±4%)

For additional information please contact 

the author at tlbailey@eiu.edu or visit 

http://ux1.eiu.edu/~mmenze/index.html

Figure 2.  Membrane integrity of  Neuro-2a cells after freezing and thawing was improved by addition of  

100 mM proline (n=3 with 2 nested replicates, ±SEM; * P < 0.05 compared to 0mM with 10% Me2SO + 

100 mM proline exposure).
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Figure 3. Membrane integrity of  Neuro-2a cells after freezing and thawing was improved by addition of  112.5 mM solution of  trehalose + proline 

(n=3 with 2 nested replicates, ±SEM; *P < 0.05 compared to 0 mM with Me2SO; # P < 0.05 compared to 0 mM with Me2SO + 25 mM

trehalose+proline).
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Table 1. Average fold change in growth per day in presence of  proline and trehalose. Recovery - cell proliferation measured for 3 days post 

incubation in indicated solutions for 3 days. The data represent the mean ± SEM of  three independent experiments (# P < 0.05 significant from 

control; *,$ P < 0.05 significant among treatments).

Treatment Cell Proliferation Increase (Fold)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Control 1.1  ±0.1 2.2 ±0.8 7.6 ±0.5 18.8 ±1.0 44.3 ±2.1 55.9 ±2.0

100 mM Trehalose 0.7 ±0.01 * 1.5 ±0.5 5.3 ±0.7 *# 8.5 ±0.3 *# 16.1 ±1.0 *# 23.4 ±2.7 *#

100 mM Proline 0.5 ±0.02 *# 1.3 ±0.3 1.9 ±0.3 # 5.4 ±0.1 *# 10.9 ±0.9 *# 31.3 ±3.2 #$

100 mM Trehalose+Proline 0.5 ±0.07 0.6 ±0.1 1.7 ±0.1 *# 2.7 ±0.7 *# 3.1 ±1.1 *# 4.8 ±1.8 #$*

Control-Recovery - - - 2.7 ±0.2 7.5 ±2.3 12.0 ±3.5

100 mM Trehalose-Recovery - - - 4.0 ±1.2 *# 12.1 ±3.5 *# 19.7 ±5.7 *#

100 mM Proline-Recovery - - - 2.2 ±0.7 * 7.5 ±2.4 * 16.2 ±4.7 *#

100 mM Tre+Pro-Recovery - - - 2.1 ±0.6 * 5.8 ±1.7 * 18.7 ±5.5 #

Trehalose + Proline Growth Rates
• We found a significant reduction in 

growth for cells incubated in 

solutions (Table 1; P < .001) with 

100 mM trehalose+proline growth 

greatly reduced compared to control 

(55.9 ±2.0 vs. 4.8 ±1.8)

• We found growth rates returned to a 

higher fold increase when switched 

back to Opti-MEM on day 3 

(Table 1; P < .001) with all conditions 

significantly higher than control
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• Human brain-specific high affinity L-proline transporter [5]

• Desiccated D. melanogaster larvae could enter anhydrobiosis

and revive upon rehydration and this strongly indicated the 

synthesis and accumulation of  trehalose [8]


