The Cryopreservation of Monolayered Neuroblastoma Cells (Neuro-2a)

Trisha L. Bailey, Dr. Britto P. Nathan, and Dr. Michael A. Menze Department of Biological Sciences, Eastern Illinois University, Charleston, IL.

Introduction

Prior studies in our laboratory have shown trehalose to increase the membrane integrity of monolayer human hepatoma cells (HepG2) during freezing [1]

- Trehalose is a naturally occurring reducer of cell stress, which protects organisms from extremes in heat shock and osmotic stress 2
- Trehalose is moved from the extracellular to intracellular compartment via endocytosis and intracellular accumulation depends on extracellular concentration [3]
- Proline concentrations were elevated in bacteria subjected to osmotic stress during growth [4]

- Human brain-specific high affinity L-proline transporter [5]
- We hypothesized that compatible osmolytes and protective sugars, such as trehalose and proline, would be beneficial in the cryopreservation of neuroblastoma cell monolayers

Statistics accomplished with one-way ANOVA test with HSD post-hoc analysis

- back to Opti-MEM on day 3 (Table 1; P < .001) with all conditions significantly higher than control

	Day 1
Control	1.1 ±
100 mM Trehalose	0.7 ±(
100 mM Proline	0.5 ±(
100 mM Trehalose+Proline	0.5 ±0
Control-Recovery	
100 mM Trehalose-Recovery	
100 mM Proline-Recovery	
100 mM Tre+Pro-Recovery	

4.0 ±1.2 *# 12.1 ±3.5 *# 19.7 ±5.7 *#

16.2 ±4.7 ***#**

18.7 ±5.5 #

2.2 ±0.7 * 7.5 ±2.4 *

2.1 ±0.6 * 5.8 ±1.7 *

Discussion

Trehalose: we found that a 24 h incubation period with 100 mM trehalose provided the best cryoprotection for monolayers stored at -80 °C

Trehalose is thought to act by altering or replacing the water shell

that surrounds lipid and

Phospholipid Trehalose Water Figure 3. Trehalose interacting with the bilayer [7].

Desiccated D. melanogaster larvae could enter anhydrobiosis and revive upon rehydration and this strongly indicated the synthesis and accumulation of trehalose [8]

Proline: we found that a 24 h incubation period with 100 mM proline provided the best cryoprotection for monolayer cells

> • When proline was incorporated into the tissues of D. melanogaster was able to survive when 50% of its body water was frozen [9]

High affinity L-proline uptake could provide an intracellular pool of L-proline, which serves a distinct metabolic or osmotic role [5]

Proline + Trehalose: we found that a [1:1] 100 mM solution of trehalose + proline afforded the greatest cryoprotection for neuronal cells in a monolayer format Growth: incubation with [1:1] 100 mM trehalose + proline solution significantly reduced the growth rate Our results suggest that a combination of solutes may be required to both stabilize the cells during the freezing process as well as manage signaling pathways

to prevent apoptosis and down-regulate metabolic

Literature Cited

1] B. Stokich, Q. Osgood, D. Grimm, S. Moorthy, N. Chakraborty, and M. a Menze, "Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose.," Cryobiology, Aug. 2014. [2] L. M. Crowe, "Lessons from nature : the role of sugars in anhydrobiosis," vol. 131, no. May 2001, pp. 505–513, 2002.

3] A. E. Oliver, K. Jamil, J. H. Crowe, and F. Tablin, "Loading Human Mesenchymal Stem Cells with Trehalose by Fluid-Phase Endocytosis," Cell Preserv. Technol., vol. 2, no. 1, pp. 35–49, Mar. 2004. 4] S. Grothe, R. L. Krogsrud, D. J. McClellan, J. L. Milner, and J. M. Wood, "Proline transport and osmotic stress response in Escherichia coli K-12.," J. Bacteriol., vol. 166, no. 1, pp. 253–9, Apr. 1986.

5] M. Velaz-Faircloth, A. Guadaño-Ferraz, V. A. Henzi, and R. T. Fremeau, "Mammalian brain-specific L-proline transporter Neuronal localization of mRNA and enrichment of transporter protein in synaptic plasma membranes.," J. Biol. Chem., vol. 270, no. 26, pp. 15755–61, Jun. 1995.

6] C. Colaco, J. Kampinga, and B. Roser, "Amorphous stability and trehalose.," Science, vol. 268, no. 5212, p. 788, May 1995.] C. Erkut, S. Penkov, K. Fahmy, and T. V Kurzchalia, "How worms survive desiccation: Trehalose pro water.," Worm, vol. 1, no. 1, pp. 61–5, Jan. 2012.

8] L. J. Thorat, S. M. Gaikwad, and B. B. Nath, "Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: a potential marker of anhydrobiosis.," Biochem. Biophys. Res. Commun., vol. 419, no. 4, pp. 638-42, Mar. 2012. 9] V. Koštál, P. Šimek, H. Zahradníčková, J. Cimlová, and T. Štětina, "Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism.," Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 9, pp. 3270-4

Additional Information

For additional information please contact the author at tlbailey@eiu.edu or visit http://ux1.eiu.edu/~mmenze/index.html

