corresponding author

[44] Widely-applicable coinage metal window electrodes on flexible polyester substrates applied to organic photovoltaics
H. M. Stec, R. A. Hatton*

[43] An indium-free low work function window electrode for organic photovoltaics which improves with in-situ oxidation
O. S. Hutter, H. M. Stec, R. A. Hatton*

[42] Plasmon-Active Nano-Aperture Window Electrodes for Organic Photovoltaics
H. M. Stec, R. A. Hatton*,

[41] Nanoscale Geometric Electric Field Enhancement in Organic Photovoltaics
L. J. Pegg, R.A. Hatton*,

[40] Ultra-High Voltage Multijunction Organic Solar Cells for Low-Power Electronic Applications

H. M. Stec, R. Williams, T. S. Jones, R. A. Hatton*,


[36] Increased efficiency in small molecule organic photovoltaic cells through electrode modification with self-assembled monolayers

[35] Organic photovoltaic devices based on water-soluble copper phthalocyanine (TSCuPc)
S. Schumann, R.A. Hatton, T.S. Jones

[34] Enhancing the Open-Circuit Voltage of Molecular Photovoltaics using Oxidized Au Nanocrystals,
L.-J. Pegg, S. Schumann, R. A. Hatton*

[33] Elucidating the factors that determine the open circuit voltage in discrete heterojunction organic photovoltaic cells
V. Chauhan, R. A. Hatton*, P. Sullivan, T. Jones*, S. W. Cho, L. Piper, A. deMasi, K. Smith,
[32] Soft X-ray Spectroscopy of C60/Copper Phthalocyanine/MoO3 Interfaces: Role of Reduced MoO3 on Energetic Band Alignment and Improved Performance

[31] The effect of a MoO3 hole-extracting layer on the performance of organic photovoltaic cells based on small molecule planar heterojunctions

[30] Copper hexadecafluorophthalocyanine (F16CuPc) as an electron accepting material in bilayer small molecule organic photovoltaic cells
J.L. Yang, S. Schumann, R.A. Hatton, T.S. Jones

[29] Electronic Structure of C60/Phthalocyanine/ITO Interfaces Studied using Soft X-ray Spectroscopies

[28] Increased efficiency of small molecule photovoltaic cells by insertion of a MoO3 hole-extracting layer

[27] Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells

[26] Open-cellular organic semiconductor thin films by vertical co-deposition using sub-100 nm nanosphere templates
S. Schumann, S. A. F. Bon, R. A. Hatton and T. S. Jones
Chemical Communications (2009) 6478-6480.

[25] The fabrication and analysis of a PbS nanocrystal:C60 bilayer hybrid photovoltaic system
D. M. Dissanayake, R. A. Hatton, T. Lutz, R. Curry, S. R. P. Silva

[24] Charge transfer between acenes and PbS nanocrystals
D. M. Dissanayake, R. A. Hatton, T. Lutz, R. Curry, S. R. P. Silva

[23] Modification of charge transport in triphenyldiamine films induced by acid oxidized single-walled carbon nanotube interlayers

[22] High performance transistors in low mobility organic semiconductors for analog and high-frequency applications (Conference Proceedings-Peer Reviewed International Journal)
X. J. Guo, F. Balon, R. A. Hatton, J. M. Shannon

[20] Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films

[19] Li-salt functionalised carbon nanotubes as low work function field emitters
(Conference Proceedings-Peer Reviewed)
S. M. Lyth, R. A. Hatton, S. R. P. Silva

[18] A PbS nanocrystal-C60 photovoltaic device for infrared light harvesting

[17] Enhancement of polymer luminescence by excitation-energy transfer from multi-walled carbon nanotubes

[16] Nanoimprinted large area heterojunction pentacene-C60 photovoltaic device

A. A. D. T. Adikaari, D. M. N. M. Dissanayake, R. A. Hatton, S. R. P. Silva,

[14] A multiwall carbon nanotube-molecular semiconductor composite for bi-layer organic solar cells
(Conference Proceedings-Peer Reviewed International Journal)


[12] Hole-injection from a polar mono-molecular layer derivatized ultra-thin gold electrode into a triphenylamine derivative,
R. A. Hatton*, M. R. Willis, J. M. Shannon,

[11] Efficient field emission from Li-salt functionalised multi-wall carbon nanotubes on flexible substrates,
S. M. Lyth, R. A. Hatton, S. R. P. Silva,

[10] Carbon nanotubes grown on In2O3:Sn glass as large area electrodes for organic photovoltaics
A. J. Miller, R. A. Hatton, S. R. P. Silva,

[9] Tuning the work function of surface oxidised multi-wall carbon nanotubes via cation exchange*
N. P. Blanchard, R. A. Hatton*, S. R. P. Silva,

[8] Interpenetrating multi-wall carbon nanotube electrodes for organic solar cells
Anthony J. Miller, Ross A. Hatton, S. Ravi P. Silva,

Anthony J. Miller, Ross A. Hatton, S. Ravi P. Silva

[6] Structural and Optoelectronic Properties of C_{60} Rods Obtained Via a Rapid Synthesis Route

Ross A. Hatton*, Martin R. Willis, Michael A. Chesters and David Briggs

Ross A. Hatton*, Martin R. Willis, Michael A. Chesters, Frank J. M. Rutten and David Briggs

[3] The use of charge transfer interlayers to control hole injection in molecular organic light emitting diodes

M. R. Willis, S. R. Day and R. A. Hatton
Kluwer Academic Publishers