Skip to main content Skip to navigation

Publications

No. of Publications: 69

See also Google Scholar


Select tags to filter on

Thermodynamic Driving Forces for Substrate Atom Extraction by Adsorption of Strong Electron Acceptor Molecules

Thermodynamic Driving Forces for Substrate Atom Extraction by Adsorption of Strong Electron Acceptor Molecules

P. Ryan, P. J. Blowey, B. S. Sohail, L. A. Rochford, D. A. Duncan, T.-L. Lee, P. Starrs, G. Costantini, R. J. Maurer, J. Phys. Chem. C 126, 6082-6090 (2022)

"A quantitative structural investigation is reported, aimed at resolving the issue of whether substrate adatoms are incorporated into the monolayers formed by strong molecular electron acceptors deposited onto metallic electrodes. A combination of X-ray standing waves, STM, and DFT show that there is an energetic driving force for adatom incorporation into adsorbate structures of the strong acceptor F4TCNQ on Ag(100) but not for the weaker acceptor TCNQ."


Roadmap on Machine Learning in Electronic Structure

Roadmap on Machine Learning in Electronic Structure

Kulik et al., IOP Electronic Structure DOI: 10.1088/2516-1075/ac572f (2022)

"A perspective roadmap that covers the present role and future perspective of machine learning in materials property prediction, the construction of accurate force fields, the solution of the many-body problem, and big data challenges."