Skip to main content Skip to navigation

Publications

No. of Publications: 70

See also Google Scholar


Select tags to filter on

Direct Experimental Evidence for Substrate Adatom Incorporation into a Molecular Overlayer

Direct Experimental Evidence for Substrate Adatom Incorporation into a Molecular Overlayer

P. J. Mouslez, L. A. Rochford, P. T. P. Ryan, P. Blowey, J. Lawrence, D. A. Duncan, H. Hussain, B. Sohail, T.-L. Lee, G. R. Bell, G. Costantini, R. J. Maurer, C. Nicklin, D. P. Woodruff, J. Phys. Chem. C 126, 7346 - 7355 (2022)

"We present the results of a detailed structural study of the Au(111)-F4TCNQ system, combining surface characterization by STM, low-energy electron diffraction, and soft X-ray photoelectron spectroscopy with quantitative experimental structural information from normal incidence X-ray standing wave (NIXSW) and SXRD, together with dispersion-corrected density functional theory (DFT) calculations. SXRD measurements provide unequivocal evidence for the presence and location of Au adatoms, while the DFT calculations show this reconstruction to be strongly energetically favored"


Thermodynamic Driving Forces for Substrate Atom Extraction by Adsorption of Strong Electron Acceptor Molecules

Thermodynamic Driving Forces for Substrate Atom Extraction by Adsorption of Strong Electron Acceptor Molecules

P. Ryan, P. J. Blowey, B. S. Sohail, L. A. Rochford, D. A. Duncan, T.-L. Lee, P. Starrs, G. Costantini, R. J. Maurer, J. Phys. Chem. C 126, 6082-6090 (2022)

"A quantitative structural investigation is reported, aimed at resolving the issue of whether substrate adatoms are incorporated into the monolayers formed by strong molecular electron acceptors deposited onto metallic electrodes. A combination of X-ray standing waves, STM, and DFT show that there is an energetic driving force for adatom incorporation into adsorbate structures of the strong acceptor F4TCNQ on Ag(100) but not for the weaker acceptor TCNQ."