Skip to main content

Global structure search for molecules on surfaces: Efficient sampling with curvilinear coordinates

Global structure search for molecules on surfaces: Efficient sampling with curvilinear coordinates

Konstantin Krautgasser, Chiara Panosetti, Dennis Palagin, Karsten Reuter, Reinhard J. Maurer, J. Chem. Phys. 145, 084117 (2016)

We extend our curvilinear coordinate global optimization method to efficiently sample adsorbate structures on surfaces.

Efficient structure search is a major challenge in computational materials science. We present a modification of the basin hopping global geometry optimization approach that uses a curvilinear coordinate system to describe global trial moves.
This approach has recently been shown to be efficient in structure determination of clusters [Nano Letters 15, 8044-8048(2015)] and is here extended for its application to covalent, complex molecules and large adsorbates on surfaces. The employed, automatically constructed delocalized internal coordinates are similar to molecular vibrations, which enhances the generation of chemically meaningful trial structures. By introducing flexible constraints and local translation and rotation of independent geometrical subunits we enable the use of this method for molecules adsorbed on surfaces and interfaces. For two test systems, trans-β-ionylideneacetic acid adsorbed on a Au(111) surface and methane adsorbed on a Ag(111) surface, we obtain superior performance of the method compared to standard optimization moves based on Cartesian coordinates.


Go To Journal

Go To ArXiv

 

basin hopping dics