
Applications of Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 

Overview  
 2D FT-ICR MS correlates precursor and fragment ions for all compounds in a complex 

sample without precursor ion isolation.  

 We recorded the 2D mass spectrum of cholesterol using Atmospheric Pressure 

PhotoIonization (APPI) for the first time. 

 We recorded the positive mode nanoESI 2D mass spectra of a tryptic digest of 

cytochrome C using both ECD and IRMPD  as fragmentation modes. 

 We discuss the advantages of 2D FT-ICR MS over MS/MS and LC-MS in terms of the 

information  available in 2D mass spectra. 

Principle of 2D FT-ICR MS 
The 

pulse sequence of this experiment is shown in Fig. 1 [1-9].  

 Precursor ions are excited coherently from the center of the ICR cell by the excitation 

pulse P1. 

 During the encoding period t1, precursor ions rotate at their own cyclotron frequency. At 

the end of t1, they have accumulated a phase ωICR×t1. 

 The encoding pulse P2 changes the precursor ions’ radius according to their phase:  if ion 

motion is in phase with the closest excitation plate , ions are coherently excited, if ion 

motion is out of phase with the closest excitation plate, ions are coherently de-excited.  

At the end of P2, ion cyclotron radii are modulated according to cyclotron frequency and t1. 

 A period of radius-dependent fragmentation (IRMPD, ECD, CID…) produces fragment ions 

with abundances that are dependent on the cyclotron radii of their precursors, i.e. their 

cyclotron frequency and t1. 

 The observe pulse P3 excites both precursor and fragment ions in order to measure the 

transient (detection date t2). 

Transients are recorded with regularly incremented values of t1.  A double Fourier transform 

according to t1 and t2 shows correlations between precursors and fragments in a two-

dimensional map.  

After mass calibration the 2D mass spectrum can be read with precursor m/z ratios vertically 

and fragment m/z ratios horizontally (fig. 2).  2D mass spectra show several characteristic 

lines : 

 The autocorrelation line (y = x) shows the correlation of the prescursor ion signal with 

their own cyclotron radius. 

 Horizontal fragment ion spectra (y = mprecursor) show the fragmentation patterns of each 

precursor ion. 

 Vertical precursor ion spectra (x = mfragment) show the precursor ions of each fragment 

ion. 

 Electron capture lines (y = (n-p)*x/n) show the capture of p electrons by n-charged 

precursor ions. 

 Neutral loss lines (y = x + mneutral)  show the loss of neutrals by precursor ions. 

 

 

 

 

 

 

 

 

 

 
 

APPI 2D IRMPD FT-ICR Mass Spectrum of Cholesterol 
 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental Methods: 

 Cholesterol sample at 100 pmol/µL in acetonitrile/water (75:25). 

 12 T SolariX FT-ICR mass spectrometer (Bruker) equipped with a Bruker II APPI  source. 

 2048 scans of 128k datapoints were recorded over a m/z 36.9-500 horizontal and m/z 

184.27-500 vertical mass range. 

 IRMPD: Synrad CO2 laser (25 W), 10.6 µm wavelength, 0.1 s irradiation at 50% power.  

 Data processing: NPK (NMR Processing Kernel), rewritten in 64-bit Python programming 

language . Processed datafiles in HDF5 file format.  

Results and Discussion: 

 APPI is a continuous ion source that generates both protonated and radical ion species. In 

the case of cholesterol, in-source ion loss of H2O and CH3
• are also observed. 

 In the context of 2D FT-ICR MS, all fragments generated in the front-end of the mass 

spectrometer are considered as precursors. 

 The 2D mass spectrum shows the fragmentation patterns of all precursors (sample, 

contaminants and in-source fragments).   

 The number of datapoints in the vertical (precursor ion) dimension lead to a 1 Da 

separation for precursor m/z ratios: we can see the difference between the fragmentation 

pattern of the protonated ion and the radical ion. 

 The vertical precursor ion scans enable the identification of the precursors of each 

fragment ion generated during the fragmentation period of the 2D FT-ICR pulse 

sequence. 

 Vertical precursor scans lead us to information on the fragmentation mechanism of 

cholesterol: loss of CH3
• can happen before of after loss of H2O. (figure 5) 

 

nanoESI 2D IRMPD and ECD Mass Spectra of a Tryptic 

Digest of Cytochrome C 
Experimental Methods: 

 Tryptic digest of cytochrome C purchased from Thermo Scientific at 800 fmol/µL in 

acetonitrile/water (25:75). 

 Positive mode nanoESI on 12 T SolariX  FT-ICR mass spectrometer (Bruker). 

 2048 scans of 128k datapoints were recorded over a m/z 147.4-3000 horizontal and m/z 

147.4-3000 vertical mass range for both 2D mass spectra. 

 IRMPD: 0.2 s irradiation at 50% power. ECD: 0.05 s irradiation. 

 Data processing: NPK (NMR Processing Kernel), rewritten in 64-bit Python programming 

language . Processed datafiles in HDF5 file format.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Results and Discussion 

 2D FT-ICR mass spectrum of a tryptic digest of cytochrome C with ECD and with IRMPD 

(40 minutes of analysis time in total). 

 We obtain the fragmentation patterns of ion species in a range of abundances, for various 

charge states. Because 2D FT-ICR MS is data-independent, we observe the fragmentation 

patterns of ion species that are not listed in the chromatogram provided by the supplier. 

 We observe charge reduction lines in the 2D ECD mass spectrum (Figure 7). 

 We observe neutral loss lines that are parallel to the autocorrelation line in the 2D IRMPD 

mass spectrum (Figure 8). 

 Sequence coverage of cytochrome C using both 2D ECD and IRMPD mass spectra after 

tryptic digest: 66% 

Separation of Fragments of Ions of close m/z ratios but Different Charge States: 

 TGPNLHGLGR3+ at m/z 390.2122 and MIFAGIK2+ at m/z 390.2278 require a separation 

power of m/Δm = 25000 in MS/MS correlate fragments and their precursors in MS/MS. 

 Fragmentation: ion of mass m and charge z loses p charges and n mass: 

 

  

 The isotopic distribution of the fragment yields (z-p), and the slope along the peaks of the 

isotopic distribution of the fragments yields z: this enables the attribution of the 

precursor for each fragment. 

 

Conclusions 
 We have expanded the capabilities of 2D FT-ICR MS to continuous ion sources other than 

EI and nanoESI by using APPI as an ion source. 

 20 minute-long experiments lead to precursor ion separation of 1 Da, which enables the 

analysis of increasingly complex samples by 2D FT-ICR MS, as well as the study of the 

different fragmentation patterns of protonated and radical ions. 

 2D FT-ICR MS allows for the differentiation of fragments generated in the front-end of the 

instrument (on autocorrelation line) and fragments generated in the ICR cell (fragment 

peak), which gives us more accurate information on fragmentation mechanisms. 

 The slope of fragment isotopic distributions allows for correct precursor identification 

when they are close in m/z ratio but with different charge states. 
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Figure 2:  Interpretation of a 2D mass spectrum. 

Figure 3:  APPI 2D IRMPD FT-ICR mass spectrum of cholesterol. 

Figure 4:  APPI 2D IRMPD FT-ICR mass spectrum of cholesterol (zoom). 

Figure 5:  Precursor scan of m/z  353.3 (M-H2O-CH3
•)+. 

Figure 6:  FT-ICR mass spectrum of a commercial tryptic digest of cytochrome C. 

Figure 7:  2D ECD mass spectrum of a commercial tryptic digest of cytochrome C. 

Figure 9:  Separation of the fragments from ions of m/z 390 using the slope of their isotopic distribution. 

Figure 8:  2D IRMPD mass spectrum of a commercial tryptic digest of cytochrome C. 
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Peptide Sequence coverage 
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Table 1:  Sequence coverage of the peptides from cytochrome C using both 2D mass spectra (black: 

peptides identified in the chromatogram, red: peptides identified in the high resolution FT-ICR mass 

spectrum). 
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