
High Throughput Multidimensional Tridiagonal System Solvers
on FPGAs

Kamalavasan Kamalakkannan
Gihan R. Mudalige

University of Warwick, UK
[kamalavasan.kamalakkannan,
g.mudalige]@warwick.ac.uk

Istvan Z. Reguly
Pazmany Peter Catholic University

Hungary
reguly.istvan@itk.ppke.hu

Suhaib A. Fahmy
King Abdullah University of Science

and Technology (KAUST)
Saudi Arabia

suhaib.fahmy@kaust.edu.sa

ABSTRACT

We present a high performance tridiagonal solver library for Xilinx

FPGAs optimized for multiple multi-dimensional systems common

in real-world applications. An analytical performance model is

developed and used to explore the design space and obtain rapid

performance estimates that are over 85% accurate. This library

achieves an order of magnitude better performance when solving

large batches of systems than previous FPGA work. A detailed

comparison with a current state-of-the-art GPU library for multi-

dimensional tridiagonal systems on an Nvidia V100 GPU shows

the FPGA achieving competitive or better runtime and significant

energy savings of over 30%. Through this design, we learn lessons

about the types of applications where FPGAs can challenge the

current dominance of GPUs.

CCS CONCEPTS

• Computer systems organization → Reconfigurable com-

puting; Multicore architectures; • Mathematics of computing→

Mathematical software performance.

KEYWORDS

High performance computing, field programmable gate arrays, tridi-

agonal solvers.

ACM Reference Format:

Kamalavasan Kamalakkannan, Gihan R.Mudalige, Istvan Z. Reguly, and Suhaib

A. Fahmy. 2022. High Throughput Multidimensional Tridiagonal System

Solvers on FPGAs. In 2022 International Conference on Supercomputing (ICS

’22), June 28ś30, 2022, Virtual Event, USA.ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3524059.3532371

1 INTRODUCTION

Tridiagonal systems of equations are solved in a wide range of High

Performance Computing (HPC) applications, particularly as part of

the numerical approximation of multi-dimensional partial differ-

ential equations (PDEs). In computational finance, the frequently

used Alternating Direction Implicit (ADI) time discretization prob-

lem (see Paceman and Rachford [20], and Douglas and Gunn [10])

requires multiple tridiagonal systems of equations to be solved in

each dimension. The large number of independent tridiagonal sys-

tems, often in multiple dimensions, offer significant parallelization

ICS ’22, June 28ś30, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2022 International
Conference on Supercomputing (ICS ’22), June 28ś30, 2022, Virtual Event, USA, https:
//doi.org/10.1145/3524059.3532371.

opportunities on modern multi-core and many-core architectures.

Recent work such as László et al. [15] has demonstrated signif-

icant speedups, re-evaluating the well known tridiagonal solver

algorithms, Thomas [26], PCR [11], and combinations of the two.

However, such problems also expose the limits of CPU and GPU

acceleration due to a number of factors. For such iterative appli-

cations, a sequence of lightweight kernels must be launched in an

iteration loop on the host CPU, hence requiring kernel input and

output data to be moved through GPU global memory repeatedly.

Unrolling multiple iterations of smaller kernels is also problematic

as it requires multiple global memory synchronizations. Data reuse

in GPUs is primarily via the cache, the performance of which is

variable and dependent on the application. FPGAs enable the de-

sign of an architecture optimized around the characteristics of the

workload which can result in improved performance. In this paper

we evaluate the design of tridiagonal system solver algorithms on

modern FPGAs. Our underlying goal is to understand the criteria

for a given system solver to be amenable to FPGA acceleration and

uncover the limitations and profitability of such accelerators.

Previous work has utilized both low-level hardware descrip-

tion languages [19, 29, 32] and high-level synthesis tools [4, 16ś

18, 30], developing single system solvers in isolation without a

design strategy that can be applied for multiple systems and mul-

tiple dimensions in general. It has also not exploited higher-gain

optimizations more important for real-world applications. Com-

parison of performance to traditional architectures such as GPUs

for multi-dimensional tridiagonal systems is also limited in current

literature, creating a need for insights into the utility of FPGAs for

these applications. In this paper we attempt to bridge this gap with

a unifying workflow for FPGA implementation of implicit solvers

for real-world multi-dimensional applications. Specifically we make

the following contributions:

• We examine the algorithmic trade-offs in FPGA acceleration

of multi-solve, multi-dimensional solvers (Section 2), propos-

ing a design and optimization strategy that optimizes based

on problem size, dimensionality, number of systems solved,

and data-flow paths required.

• Using this approach, we design a new tridiagonal solver li-

brary that can be used in the solution of multi-dimensional

applications (Section 3). The architecture exploits High Band-

width Memory (HBM) to combine multiple dimension solves

and explicit loops, along with batched execution of multi-

ple independent solves. We present the optimized design of

two non-trivial applications, a 2D and 3D ADI heat diffusion

solver, implemented with both single precision (FP32) and

double precision (FP64) floating point representations, and a

https://doi.org/10.1145/3524059.3532371
https://doi.org/10.1145/3524059.3532371
https://doi.org/10.1145/3524059.3532371

ICS ’22, June 28–30, 2022, Virtual Event, USA Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A. Fahmy

2D Stochastic-Local Volatility (SLV) model application from

the financial computing domain.

• An analytical performance model is developed (Section 3)

to obtain estimates for application runtime, giving insights

into the profitability of implementing the tridiagonal sys-

tem solvers on Xilinx FPGAs using our design strategy. The

model predicts runtime considering system/batch sizes and

optimizations applied together with memory requirements

and operating frequency. Runtime predictions are within

15% of that achieved on evaluated applications.

• Finally, we show competitive performance on the Xilinx

Alveo U280 FPGA compared to an HPC-grade Nvidia V100

GPU, for both FP32 and FP64 precision, and much improved

energy efficiency (Sections 4 and 5).

To our knowledge the extended workflow, new library, predictive

model, and the superior performance demonstrated for the above

applications present key innovations, advancing the state-of-the-

art. This also showcases an interesting class of applications where

the FPGA challenges the performance of GPUs, currently the best

hardware for direct solution of multi-dimensional tridiagonal sys-

tems, both in terms of runtime and energy consumption. We believe

this will be particularly valuable in areas such as financial comput-

ing, reducing the complexity of the development cycle for FPGA

platforms.

2 BACKGROUND

Tridiagonal systems arise from the need to solve a system of linear

equations as given in equation (1), where 𝑎0 = 𝑐𝑁−1 = 0. Its matrix

form 𝐴𝑥 = 𝑑 can be stated as in equation (2).

𝑎𝑖𝑢𝑖−1 + 𝑏𝑖𝑢𝑖 + 𝑐𝑖𝑢𝑖+1 = 𝑑𝑖 , 𝑖 = 0, 1, ..., 𝑁 − 1 (1)













𝑏0 𝑐0 0 . . . 0

𝑎1 𝑏1 𝑐1 . . . 0

0 𝑎2 𝑏2 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . 𝑎𝑁−1 𝑏𝑁−1

























𝑢0
𝑢1
𝑢2
.
.
.

𝑢𝑁−1













=













𝑑0
𝑑1
𝑑2
.
.
.

𝑑𝑁−1













(2)

The solution to such systems of equations is well known. The

Thomas algorithm [26] (see Algo. 1) carries out a specialized form

of Gaussian elimination (assuming non-zero 𝑏𝑖) providing the least

computationally expensive solution, but suffers from a loop carried

dependency. It has a time complexity of O(𝑁). In contrast, the PCR

Algorithm 1: thomas(𝑎, 𝑏, 𝑐, 𝑑,𝑢)

1: 𝑑∗0 ← 𝑑0/𝑏0
2: 𝑐∗0 ← 𝑐0/𝑏0
3: for 𝑖 = 1, 2, ..., 𝑁 − 1 do

4: 𝑟 ← 1/(𝑏𝑖 − 𝑎𝑖𝑐
∗
𝑖−1)

5: 𝑑∗𝑖 ← 𝑟 (𝑑𝑖 − 𝑎𝑖𝑑
∗
𝑖−1)

6: 𝑐∗𝑖 ← 𝑟𝑐𝑖
7: end for

8: 𝑢𝑁−1 ← 𝑑𝑁−1
9: for 𝑖 = 𝑁 − 2, ..., 1, 0 do

10: 𝑢𝑖 ← 𝑑∗𝑖 − 𝑐
∗
𝑖𝑢𝑖+1

11: end for

12: return 𝑢

algorithm [11](see Algo. 2), operates on a normalized matrix so that

𝑏𝑖 = 1 and then for each matrix row 𝑖 , subtracts multiples of rows

𝑖 ± 20, 21, 22, ..., 2𝑃−1, where 𝑃 is the smallest integer such that 2𝑃 ≥

𝑁 . This leads to each iteration reducing each of the current systems

into two systems of half the size. After 𝑃 steps, all of the modified

𝑎 and 𝑐 coefficients are zero, leaving values for the unknowns 𝑢𝑖 .

In PCR, the iterations of the inner loop do not depend on each

other, which is well suited for traditional multi-core/many-core

architectures such as CPUs and GPUs allowing multiple threads

to be used to solve each tridiagonal system. However, PCR has a

complexity of O(𝑁 log𝑁) and is more computationally expensive

than the Thomas algorithm, which for an FPGA implementation

poses an important consideration, (as examined in Section 3) due

to the limited availability of resources.

Algorithm 2: pcr(𝑎, 𝑏, 𝑐, 𝑑,𝑢)

1: for 𝑝 = 1, 2, ..., 𝑃 do

2: 𝑠 ← 2𝑝−1

3: for 𝑖 = 0, 1, ..., 𝑁 − 1 do

4: 𝑟 ← 1/(1 − 𝑎
(𝑝−1)
𝑖

𝑐
(𝑝−1)
𝑖−𝑠 − 𝑐

(𝑝−1)
𝑖

𝑎
(𝑝−1)
𝑖+𝑠)

5: 𝑎
(𝑝)
𝑖
← −𝑟 (𝑎

(𝑝−1)
𝑖

𝑎
(𝑝−1)
𝑖−𝑠)

6: 𝑐
(𝑝)
𝑖
← −𝑟 (𝑐

(𝑝−1)
𝑖

𝑐
(𝑝−1)
𝑖+𝑠)

7: 𝑑
(𝑝)
𝑖
← 𝑟 (𝑑

(𝑝−1)
𝑖

− 𝑎
(𝑝−1)
𝑖

𝑑
(𝑝−1)
𝑖−𝑠 − 𝑐

(𝑝−1)
𝑖

𝑑
(𝑝−1)
𝑖+𝑠)

8: end for

9: end for

10: 𝑢 ← 𝑑 (𝑃)

11: return 𝑢

The SPIKE algorithm [21] decomposes the 𝐴 matrix, into 𝑝 par-

titions of size𝑚 to obtain the factorization of 𝐴 = 𝐷𝑆 where 𝐷 is

a main diagonal block matrix consisting of tridiagonal matrices

𝐴1, ..., 𝐴𝑝 and 𝑆 is the so called spike matrix. The solution to the

system then becomes, 𝐷𝑆𝑥 = 𝑑 where the system 𝐷𝑌 = 𝑑 can be

used to obtain 𝑌 , and 𝑆𝑥 = 𝑌 to obtain 𝑥 . Since matrix 𝐷 is a simple

collection of 𝐴𝑖 , each 𝐴𝑖𝑌𝑖 = 𝑑𝑖 can be solved independently. Solv-

ing 𝑆𝑥 = 𝑌 requires only solving a reduced penta-diagonal system

(seeWang et al. [28] for a detailed description). The algorithm there-

fore operates in three steps: factorization, reduced system solve,

and back substitution, where the factorization (LU and UL) has a

complexity of O(𝑁). The reduced system can be solved directly or

indeed can be further reduced to a block diagonal system using the

truncated-SPIKE variation that ignores the outer diagonals when 𝐴

is diagonally dominant. The SPIKE algorithm is particularly well

suited for solving very large systems on traditional architectures.

Multiple Systems in 2D/3D: Each of the above algorithms

specifies the solution of a single tridiagonal system, which is char-

acteristically a one dimensional problem. However, applications of

interest are usually 2- or 3-dimensional, where tridiagonal systems

are formed by solving along one of the coordinate axes. This leads to

a number of independent systems based on the number of discretiza-

tion points along the other axes. For example a 3D system with

𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 mesh points will have 𝑁𝑦 × 𝑁𝑧 tridiagonal systems

when solving along the first dimension (each system with size 𝑁𝑥),

𝑁𝑥 × 𝑁𝑧 along the second (each with size 𝑁𝑦) and so on. The ADI

method, (used in the applications in this work), repeatedly solves

tridiagonal systems along these different axes. Here, the 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖
and 𝑑𝑖 coefficients are calculated for each grid point, in a way that

matches the underlying data structure of the application; data is

High Throughput Multidimensional Tridiagonal System Solvers on FPGAs ICS ’22, June 28–30, 2022, Virtual Event, USA

stored contiguously in either a row-major (𝑍 is contiguous, 𝑌 , 𝑋

are strided) or more commonly a column-major (𝑋 is contiguous, 𝑌

and𝑍 are strided) format. This poses a challenge for algorithms that

then solve multiple tridiagonal systems simultaneously; coefficients

for an individual system will be laid out differently, depending on

the direction of the solve. This is especially an issue on traditional

architectures such as CPUs or GPUs [15]. An FPGA design must

also carefully consider memory performance when solving such

multi-dimensional applications.

3 FPGA ARCHITECTURE DESIGN

FPGAs can offer high performance computation through the im-

plementation of deeply pipelined custom datapaths. There is no

fixed general purpose architecture exploited by software as in a

traditional CPU or GPU. Instead, a tailored datapath for the compu-

tation is synthesized using a variety of basic circuit elements. These

are digital signal processing (DSP) blocks to implement arithmetic

operators, look-up-tables (LUTs) and registers for interconnecting

and control logic, fast on-chip block memories (BRAM/URAM) of

kilobit capacities for buffering, clock modules for managing differ-

ent data rates, and a rich routing fabric to connect these elements

into a large logical architecture. Optimizing the datapaths around

the capabilities of the low level primitives, especially DSP blocks,

allows for high operating frequency to be achieved, but requires

considered application of pipelining [23]. Large FPGAs comprise

multiple interposed die with such resources called Super Logic

Regions (SLR). The Xilinx U280 has 3 SLRs. Bandwidth within an

SLR is extremely high (TB/s) due to the wealth of connections and

memory elements, while between SLRs it is limited by the num-

ber of silicon interposer connections available. An FPGA board

typically includes large capacity external DRAM (32 GB on the

U280) and potentially High Bandwidth Memory (HBM). Managing

the movement of data between these memories and the internal

FPGAmemory is key to achieving high computational performance.

The introduction of High-Level Synthesis (HLS) tools has reduced

the complexity of FPGA programming, where a high-level pro-

gramming language such as C++/OpenCL can be used with special

directives to target the FPGA. However, achieving high perfor-

mance is still significantly challenging as code must be structured

to suit the dataflow/pipelined programming style. The key optimiza-

tions required to obtain enhanced performance are transformations

enabling pipelining, unrolling loops by replicating computational

units (CUs), and tiling to improve locality such that data can be

reused through fast on-chip memory. For an overview of these tech-

niques we refer the reader to De Matteis et al. [9] and the Xilinx

HLS programming guide [3].

3.1 Small and Medium System Solves

Considering the resources available on an FPGA, a single tridiag-

onal system solve, using the Thomas algorithm in Algo. 1, would

require 4 multiplications, 1 division, and 2 subtractions for the for-

ward path and one multiplication and subtraction for the backward

path. However, due to dependencies for computing 𝑑∗𝑖 and 𝑐∗𝑖 , each

iteration of the forward path loop must be executed serially, incur-

ring the full arithmetic pipeline latency, 𝑙𝑓 (≈30 clock cycles on a

Xilinx U280 FPGA for FP32), to complete the forward loop datapath.

Additionally the backward loop can only start when all iterations

of the forward path have been completed, due to the reverse data

access where the loop starts from iteration 𝑁 − 2. Thus the total la-

tency for solving a single system with the Thomas algorithm would

be approximately 𝑙𝑓 ×𝑁 + 𝑙𝑏 ×𝑁 clock cycles (assuming 𝑙𝑏 cycles is

the arithmetic pipeline latency for completing a single iteration of

the backward loop). On the other hand, a PCR based single solver

implementation would require 4 subtractions, 9 multiplications, and

1 division within the inner loop of Algorithm 2. If 𝑙 is the arithmetic

pipeline latency of the inner loop, then the total number of clock

cycles for the PCR algorithm, is (𝑁 + 𝑙) × 𝑙𝑜𝑔𝑁 . Here we assume

that the outer loop is executed serially and a fully pipelined inner

loop, i.e., an initiation interval of one. Given inner loop iterations

are independent, they can be unrolled by some factor 𝑓𝑈 = 2, 3, ...

which will then require 𝑓𝑈 × the resources to implement the inner

loop. The total clock cycles consumedwill then be (𝑁 /𝑓𝑈 +𝑙)×𝑙𝑜𝑔𝑁 .

The outer loop iterations have a dependency and thus cannot be

unrolled.

For the Thomas solver, there are 𝑙𝑓 clock cycles between con-

secutive iterations of a single system solve in the forward path.

This can be considered as a dependency distance. As such, we could

attempt to solve 𝑙𝑓 tridiagonal systems to fully utilize the forward

path circuit pipeline. This can be done by interleaving the iterations

of the forward pass loop of the Thomas solver such that iteration 1

of system 1 is input followed by iteration 1 of system 2 and so on,

per clock cycle, up to iteration 1 of system 𝑙𝑓 . In fact selecting a

group, 𝑔 = 𝑀𝐴𝑋 (𝑙𝑓 , 𝑙𝑏) enables 𝑔 system solves to be interleaved,

saturating the pipeline. If there are 𝐵 total tridiagonal systems to

be solved, i.e. a batch size of 𝐵, then the total latency with Thomas

is given by (3):

(3 + ⌈𝐵/𝑔⌉) × 𝑔𝑁 (3)

Thus for large 𝐵 the total latency tends to 𝐵𝑁 . This is a charac-

teristic of all O(𝑁) algorithms, which can ideally be pipelined to

accept inputs each clock cycle at the cost of increased resource

consumption.

For the PCR algorithm, there are no dependencies between it-

erations of a single system and solving a batch of 𝐵 systems (by

batching the inner loop) incurs the latency in (4):

(𝐵𝑁 /𝑓𝑈 + 𝑙) × 𝑙𝑜𝑔𝑁 (4)

For large 𝐵, dividing (4) by (3) gives a factor of 𝑙𝑜𝑔𝑁 /𝑓𝑈 pointing

to the fact that the batched Thomas solver is 𝑙𝑜𝑔𝑁 times faster than

batched PCR, for 𝑓𝑈 = 1. Thus, to match the Thomas solver latency,

a batched PCR implementation needs an unroll factor 𝑓𝑈 = 𝑙𝑜𝑔𝑁 .

However, given that the PCR inner loop has a considerably higher

resource requirement compared to the Thomas solver, the batched

Thomas solver will always provide better performance for the same

amount of FPGA resources. An exception to this is when the system

size, 𝑁 , is large and FPGA on-chip memory becomes the limiting

factor. Designs for such cases are discussed in Sec 3.2.

Considering a batched solver based on the SPIKE algorithm,

assume each system in the batch is of size 𝑁 . The algorithm creates

𝑚 blocks and each has LU and UL factorization done in parallel,

followed by the pentadiagonal solve and then back-substitution in

parallel. This incurs a total latency given by (5):

(3 + ⌈𝐵𝑚/𝑔⌉) × 𝑔𝑁 /𝑚 +𝑚𝐶 + 3 × 𝑔𝑁 /𝑚 (5)

ICS ’22, June 28–30, 2022, Virtual Event, USA Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A. Fahmy

The latency for the factorization for each block (first term), is sim-

ilar to a Thomas forward and backward solve carried out in an

interleaved manner. Although the number of clock cycles spent on

the pentadiagonal reduced system solve is 𝐵𝑚𝐶 (assuming a linear

latency model), only the latency for first stage of the pentadiagonal

solver is added to equation 5 as all three modules are pipelined.

The final term is the added delay due to back-substitution stage

which is again a Thomas solver. When 𝐵 is sufficiently large and

stages are pipelined, a latency of 𝐵𝑁 is achieved. Again this is due

to the SPIKE algorithm having a O(𝑁) complexity. However, if

𝐵𝑚𝐶 ⩾ 𝐵𝑁 then dataflow must stall for some time, decreasing

throughput. Resource consumption of the LU/UL factorizations

requires 3× the resources for an equivalent Thomas solver and the

pentadiagonal solver needs additional resources, again more than

an equivalent Thomas solver.

Given the lower resource requirements and profitability of the

Thomas algorithm, compared to the other algorithms, we first focus

on its optimized batched implementation on an FPGA for system

sizes that can fit into on-chip memory. As we are interleaving

groups of 𝑔, the 𝑐𝑖−1, 𝑑𝑖−1 and 𝑢𝑖+1 values needs to be stored in

on-chip memory such that they can be used in subsequent (𝑖𝑡ℎ) iter-

ations. For a FP32 implementation we have found that a grouping of

32 is sufficient to effectively pipeline the computation (this is 64 for

FP64) on the Xilinx Alveo U280. The forward and backward loops

operate in opposite directions and thus a First-In-First-Out (FIFO)

buffer cannot be used, rather on-chip addressable memory is used

for data movement. The forward and backward loops can be made

to operate in parallel when batching a number of system solves,

using ping-pong buffers (also called double buffers). With this tech-

nique, dual port memory is partitioned into two parts, one being

written while the other is read. Once writes (by the forward pass)

and reads (backward pass) are completed, read and write halves are

swapped. Note that the very first read must wait until the very first

write has completed. Additionally, the technique also doubles the

memory requirement compared to using the same memory portion

for both read and write. The latencies for writing to the ping-pong

buffer, firstly for 𝑎, 𝑏, 𝑐, 𝑑 belonging to the first group of systems,

then writing the resulting 𝑐∗, 𝑑∗ in forward solve and finally writing

𝑢 in backward solve, contribute to the latency term 3𝑔𝑁 in (3). Here

we assume, inputs 𝑎, 𝑏, 𝑐, 𝑑 come from FIFO and output 𝑢 is written

back to FIFO. If inputs/outputs are read/written to on-chip memory

instead, then (3) becomes (1 + ⌈𝐵/𝑔⌉) × 𝑔𝑁 .

The total on-chip memory required for a single Thomas solver

interleaving 𝑔 systems can be computed based on the need to

store the 𝑎, 𝑏, 𝑐, 𝑑, 𝑐∗, 𝑑∗ and 𝑢 vectors, where each consumes 2𝑔𝑁

words in the ping-pong buffers. The total 14𝑔𝑁 requirement with

dual port memory can be satisfied with 7× dual port block RAMs

(URAM/BRAM) each with a capacity of 2𝑔𝑁 . Additionally there is a

need to store 𝑔 values of the (𝑖 − 1)𝑡ℎ iteration separately, requiring

3 on-chip memories with a capacity of 𝑔 words.

Data transfer from external memory to on-chip memory plays

a crucial role in achieving high performance, especially for multi-

dimensional solvers such as the 3D ADI heat diffusion application

detailed later in this paper. If we consider a 3D application with

systems sizes (𝑁) of 256 in all three dimensions, then a solve along

the x-dimension will have 𝑌𝑍 (256 × 256 in this case) systems

to be solved, each corresponding to an x-line system of size 256.

Given the data is stored in consecutive memory locations along

the 𝑥-lines, good memory throughput can be achieved. However

to exploit the full memory bandwidth, a larger number of memory

ports must be used. For the 512-bit memory ports, on the Alveo

U280, it is sufficient to saturate the data-flow pipeline with a width

of 256-bits at a 300MHz clock speed, which is our target frequency.

This enables us to fetch data sufficient to feed 8 Thomas solvers in

parallel. Such a configuration can be viewed as a vectorized Thomas

solver. Additionally, the total 𝑌𝑍 𝑥-lines can be set up to be solved

in groups (𝑔) of 32. Here, the 1st Thomas solver datapath solves

the 0th, 8th, 16th and so on 𝑥-lines, the 2nd solves 1st, 9th, 17th

and so on 𝑥-lines, and so on. Batches of 𝑥-lines can be solved in

such interleaved groups to saturate the dataflow pipeline to achieve

higher throughput.

In the 𝑥-dimension, the reads from external memory bring in data

stored in consecutive memory locations. However, the data fetched

belongs to the same line (i.e. same system), thus we need to buffer 8

𝑥-lines internally and carry out an 8 × 8 transpose to feed that to 8

different solvers (see Figure 1(a) for an illustration of the issue with

a 4× 4 transpose). For solving along the 𝑦-dimension, we fetch each

𝑋𝑌 plane to on-chip memory to avoid strided memory accesses

and then read along the 𝑦-lines from the on-chip memory (see

Figure 1(b)). Similarly for solving along the 𝑧-dimension, we read in

𝑥-lines (which are consecutive in memory) along the 𝑧 dimension,

fetching 𝑋𝑍 planes, to on-chip memory. No transpose is required

for 𝑦- and 𝑧-dimension solves as each element corresponds to a

different system. Utilizing the HBM available on modern FPGAs,

the full vectorized Thomas solver, which can be viewed as a single

compute unit (CU), can be instantiated a number of times to obtain

further parallel performance. Specific designs for applications with

multiple CUs are discussed in Section 4. For a 3D application, the

𝑥- and 𝑦-dimension solves can be effectively pipelined, storing the

resulting𝑋𝑌 planes in on-chip memory without writing to external

memory. However the 𝑧-dimension solve requires reading from

external memory. As such, 2D applications can be further optimized

with unrolling. Again we discuss specific implementations with

unrolling in Section 4.

3.2 Larger System Solves

Interleaved solving of systems requires on-chip memory propor-

tional to the system size, 𝑁 , and number of groups 𝑔. As such, the

maximum size of the system that can be solved is limited by the

FPGA on-chip memory resources. We can split the tridiagonal sys-

tem into subsystems (or tiles) of size𝑀 where each subsystem can

be solved using a modified Thomas solver, where, after a forward

and backward phase, each unknown is expressed in terms of two

unknowns 𝑢0 and 𝑢𝑀−1:

𝑎𝑖𝑢0 + 𝑢𝑖 + 𝑐𝑖𝑢𝑀−1 = 𝑑𝑖 , 𝑖 = 1, 2, ..., 𝑀 − 2 (6)

This results in a reduced tridiagonal system spread across each

sub-domain as detailed by László et al. [15]). The unknowns at the

beginning and end of each subsystem can be solved again using

the Thomas algorithm, or indeed PCR. Finally, the result from the

reduced system, is substituted back into the individual subsystems

(see László et al. [15] which implements a Thomas-PCR solver for

GPUs).

High Throughput Multidimensional Tridiagonal System Solvers on FPGAs ICS ’22, June 28–30, 2022, Virtual Event, USA

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

T
h

o
m

a
s

T
h

o
m

a
s

T
h

o
m

a
s

T
h

o
m

a
s

X

E
x
te

rn
a
l
M

e
m

o
ry

On-chip Memory

4
-p

o
in

t
w

id
th

 d
a
ta

 p
a
th

 t
o
 o

n
-c

h
ip

 m
e
m

o
ry

4
-p

o
in

ts
 a

rr
iv

e
 e

a
c
h
 c

lo
c
k
 c

y
c
le

4x4 registers

Loading 4x4 block
into register.
4 clock cycles to
load from on-chip
memory.

4x4 registers

Transpose
4x4 block.
1 clock
cycle to
Transpose.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 0 0 0
4-point
width data
path to on-
chip
memory.

Y

T
h

o
m

a
s

T
h

o
m

a
s

T
h

o
m

a
s

T
h

o
m

a
s

(a) x-dim solve (b) y-dim solve

Figure 1: Datapath for 𝑥- and 𝑦-dim solves. 4-point data path

width and 4× (vectorized) Thomas solvers.

The tiled-Thomas-Thomas solver requires additional computa-

tion to solve the reduced system. To achieve higher performance,

forward and backward phases over tiles can be interleaved. The

reduced system size 𝑁𝑟 is double the number of tiles. Solving the re-

duced system with Thomas requires 2𝑔𝑁𝑟 clock cycles. This should

not exceed the clock cycles taken by the forward and backward

phases over the tiles. At the end of the backward phase, results

(𝑎∗, 𝑐∗ and 𝑑∗ as noted in [15]) are stored in a FIFO buffer while the

reduced system for each tile is computed. Then the reduced system

results can be substituted back to complete the solve. Using a FIFO

maintains the dataflow pipeline without stalling.

Considering a system of size 𝑁 , split into 𝑡 tiles (note then

𝑁𝑟 = 2𝑡), assume we interleave 𝑔 tiles using the Thomas-Thomas

algorithm to solve a total of 𝐵 systems. Then the total latency is

given by (7):

(3 + ⌈𝐵𝑡/𝑔⌉) × ⌈𝑁 /𝑡⌉𝑔 + 𝑔𝑟 × (2𝑡) × 2 (7)

The second term is for the reduced solve. The 𝑔𝑟 is similar to 𝑔, but

it is equal to or larger than number of interleaved systems for the

reduced solve. It is 32 for FP32 and 64 for FP64 on the U280. Similarly,

based on the latency for solving the first phase of the algorithm on a

tile, the number of systems to be interleaved is ⌈32/𝑡⌉ for FP32 and

⌈64/𝑡⌉ for FP64. For larger B, we can see that the latency tends to

𝐵𝑡 ⌈𝑁 /𝑡⌉. Considering on-chip memory requirements the forward

and backward phases of the modified Thomas can be shown to

require 9 × 2 × 𝑔/𝑡 × 𝑁 words that can be satisfied by 9 on-chip

memories setup as ping-pong buffers. Here we note that larger 𝑡

lead to lower memory requirement. The reduced solve requires

much less memory, 7 × 2 × 2𝑡 × ⌈𝑔/𝑡⌉ in the form of 7 ping-pong

buffers. Furthermore, a FIFO buffer would be required, of length

equivalent to the maximum number of clock cycles spent on the

reduced system, as we have to flush solved tiles from the backward

phase.

The reduced system solve can also be implemented with the PCR

algorithm resulting in the latency given in (8).

(3 + ⌈𝐵𝑡/𝑔⌉) × ⌈𝑁 /𝑡⌉𝑔 + (2𝑡 + 𝑙) × 𝑙𝑜𝑔(2𝑡) (8)

Again for larger 𝐵, this tends to 𝐵𝑡 ⌈𝑁 /𝑡⌉, however, there is a lower

on-chip memory requirement of (2𝑡 + 𝑙) × 𝑙𝑜𝑔(2𝑡) words for each

1 10 100 1000
Batch Size

10−6

10−5

10−4

10−3

10−2

10−1

Ru
nt

im
e

(s
ec

on
ds

)

tridsolvelib-128
Xilinxlib_F1-128
Xilinxlib_F2-128
Tiled-tridsolvelib-1024
Xilinxlib_F1-1024
Xilinxlib_F2-1024

Figure 2: Proposed tridsolvlib vs xilinxlib (FP32) perfor-

mance for system sizes of 128 and 1024.

of the 3 FIFO buffers, due to the lower latency for reduced system

solve in PCR. Since dataflow design requires matching performance

of solving tiles and the reduced system and as PCR is faster when

solving reduced systems, the number of tiles can be increased even

for smaller systems, further reducing the on-chip memory require-

ments for the first phase of the algorithm. As such we can expect

the Thomas-PCR version to give better performance.

4 PERFORMANCE EVALUATION

In this section we examine the achieved performance for the above

FPGA design strategy. First, we briefly compare the performance

of our library to a current state-of-the-art FPGA tridiagonal solver

library from Xilinx [4] which is based on PCR, demonstrating the

higher performance gains from a batched Thomas-based solver as

predicted by the performance model developed in Section 3. Batch-

ing of systems is key to higher performance. Figure 2 presents the

performance of 1D tridiagonal systems of size 128 and 1024, in

FP32, solved using the Xilinx library (xilinxlib-F1) compared

to our Thomas algorithm-based library (tridsolvlib) and tiled

Thomas-PCR (Tiled-tridsolvlib) on a range of batch sizes. As

predicted by the model, for larger batch sizes the Xilinx library per-

formed significantly slower than the Thomas based solver. Adding

further optimizations, such as inner loop unrolling and a FIFO data

path to the Xilinx solver (xilinxlib-F2) only marginally improves

performance, leaving an order of a magnitude performance gap.

We also observe that the PCR-based xilinxlib-F2 implementa-

tion consumes higher resources. Tiled-tridsolvlib breaks the

systems into 32 tiles, and gives faster solve times compared to

tridsolvlib for small batch sizes due to smaller tiles being solved

in an interleaved manner.

In the remainder of this section we focus on using our FPGA

design strategy, specifically applied to representative, non-trivial

applications. We investigate both 2D and 3D applications, with both

FP32 and FP64 precision. The performance models are used to de-

termine initial design parameters and runtimes, which we compare

to achieved runtimes on a Xilinx Alveo U280. We use Vivado C++

due to ease of use for configurations and support of some C++ con-

structs compared to OpenCL. However, OpenCL could equally be

used to implement the same design. Resources are estimated, with

ICS ’22, June 28–30, 2022, Virtual Event, USA Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A. Fahmy

Table 1: Experimental systems specifications.

FPGA Xilinx Alveo U280 [31]

DSP blocks 8490

BRAM/URAM 6.6MB (1487 blocks)/34.5MB (960 blocks)

HBM 8GB, 460GB/s, 32 channels

DDR4 32GB, 38.4GB/s, in 2 banks

Host AMD Ryzen Threadripper PRO 3975WX (32 cores)

512GB RAM, Ubuntu 18.04.6 LTS

Design SW Xilinx Vivado HLS, Vitis 2019.2

Run-Time Xilinx XRT 202020.2.9.317

GPU Nvidia Tesla V100 PCIe [1]

Global Mem. 16GB HBM2, 900GB/s

Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS

Compilers, OS nvcc CUDA 10.0.130, Debian 9.11

the aid of Vivado HLS tools. Finally, we compare performance on

the FPGA to an Nvidia Tesla V100 GPU using the tridiagonal solver

library, tridsolver implemented by László et al. [2, 15] using its

batched version presented by Reguly et al. [22]. This GPU library

has been shown [7] to provide matching or better performance than

the two current batch tridiagonal solver functions in Nvidia’s cuS-

PARSE library [6, 27] ś cusparse<t>gtsv2StridedBatch() and

cusparse<t>gtsvInterleavedBatch(). Our experiments also con-

firmed these results for the applications evaluated in this paper. Ad-

ditionally it features direct support for creating multi-dimensional

solvers, whereas gtsvInterleavedBatch() requires data layout

transformations, for example in between doing an 𝑥-solve and a

𝑦-solve to implement multi-dimensional problems. The cuSPARSE

gtsv2StridedBatch() library variant was observed to be slower.

Thus we use tridsolver in our evaluation throughout this paper,

but note that cuSPARSE libs would have equally provided the same

insights when compared to the FPGA solvers on the Xilinx U280.

Given that previous work has demonstrated GPUs to provide sig-

nificantly better performance than multi-threaded CPUs [15], we

do not compare with CPU implementations. Note that we only

measure and present the time for the main iterative loop. As the ap-

plications carry out large numbers of iterations, the data copied to

the device (on both devices via PCIe, incurring similar overheads),

is used repeatedly. Therefore, the transfer overhead is amortized.

Furthermore, with large multi-batch execution in real workloads,

the initial transfer is further hidden behind computation. Hence,

data copy time from host to device (both on FPGA and GPU) are

not included in our results.

Table 1 briefly details the specifications of the FPGA and the

GPU systems (both hardware and software) used in our evaluation.

The Nvidia V100 is based on 12nm technology while the Xilinx

U280 is 16nm. The GPU also has a memory bandwidth of 900GB/s,

nearly twice that of the U280’s 460GB/s. Thus we selected the V100

as a fair but challenging competitor.

4.1 ADI Heat Diffusion Application

The first application is an Alternating Direction Implicit (ADI) based

solve of the heat diffusion equation. The high-level algorithm of

the application in 3D is detailed in Algo. 3.

Algorithm 3: 3D ADI Heat Application

1: for 𝑖 = 0, 𝑖 < 𝑛𝑖𝑡𝑒𝑟 , 𝑖 + + do

2: Calculate RHS : 𝑑 = 𝑓7𝑝𝑡 (𝑢), 𝑎 =
−1
2 𝛾, 𝑏 = 𝛾, 𝑐 = −12 𝛾

3: Tridslv(x-dim), update 𝑑

4: Tridslv(y-dim), update 𝑑

5: Tridslv(z-dim), update 𝑑

6: 𝑢 = 𝑢 + 𝑑

7: end for

The application consists of an iterative loop which starts by

calculating the RHS values using a 7-point stencil, followed by

calls to the tridiagonal solver for each of two or three dimensions,

depending on the application. The updates from the tridiagonal

solver, Tridslvs are accumulated to 𝑢 before the next iteration. For

the 3D ADI application, there are three calls to Tridslv. A GPU

implementation has four kernels called by an iterative loop on the

host. Fusing these kernels together does not improve performance

as it requires global synchronization for data structure 𝑑 and the

memory accesses are along different directions of the 3D mesh,

leading to poor cache utilization. The non-coalesced memory ac-

cess pattern of Tridslv(x-dim) is a challenge for GPUs. László et

al. [15] improved performance through shared memory and register

based transposing.

An initial FPGA design implements the application as a single

hardware unit given the data dependencies between the calls. This

enables FPGA resource utilization to be maximized by implement-

ing 6 CUs each having 8 Thomas solvers synthesized as a vectorized

solver. The RHS calculation, which is a 3D explicit stencil loop was

implemented using techniques similar to those in [13], as a separate

module. The intermediate results between CUs and RHS module

were written/read to/from external memory. The number of CUs

is then limited by the available HBM ports but not by any other

resource. An improvement on this initial design fuses the genera-

tion of 𝑎, 𝑏, 𝑐 coefficients with the tridiagonal solver. This enables

the required number of HBM ports to be reduced and synthesis

of a maximum of 16 CUs. We opt for 12 CUs to reduce routing

congestion which affects the maximum frequency achievable on

the FPGA.

The 𝑥-dim and 𝑦-dim solves can be synthesized as separate mod-

ules, pipelining the𝑋 and𝑌 dimension calculation without needing

to buffer intermediate results in external memory. Essentially, 𝑋𝑌

planes are buffered in on-chip memory, but solvable mesh sizes are

limited by BRAM/URAM usage. To also pipeline the 𝑧-dim solve the

full mesh must be buffered on-chip which significantly limits the

mesh size, hence we do not attempt it here. The pipelining reduces

the bandwidth requirement by half compared to the previous design.

The first module, RHS + Tridslv(x-dim) + Tridslv(y-dim) and

secondmodule, Tridslv(z-dim), operate in parallel in a ping-pong

fashion. This effectively increases the number of modules working

in parallel to 24, considering the availability of HBM ports. The

design now has a large pipeline start delay and is best utilized by

batching large numbers of 3D meshes to obtain higher throughput.

Xilinx dataflow design synthesis requires separate data structures

for independent read and write operations. We introduce two data

High Throughput Multidimensional Tridiagonal System Solvers on FPGAs ICS ’22, June 28–30, 2022, Virtual Event, USA

Thomas

Interleave

Thomas
Forward

Thomas
Backward

Tiled Thomas

Interleave

Tiled Thomas
Forward

Tiled Thomas

Backward

Reduced Solve
Thomas/PCR

Back
Subs�tu�on

2D Stencil
(RHS)

Rows to 8x8
Blocks

8x8
Transpose

Thomas
Solver

8x8
Transpose

8x8 Blocks
to Rows

Row to Col
Transpose

Thomas
Solver

Col to Row
Transpose

Read Module
(d,u)

Read Module
(acc1,acc2)

Write Module
(u,d)

Write Module
(acc2,acc1)

tridslv(x-dim) tridslv(y-dim)

Replicate block to
unroll Itera�ve loop (2D ADI)

2D ADI Compute Unit

Thomas Solver Tiled Thomas Solver

RHS+tridslv(x-dim)+tridslv(y-dim)

AXI Interconnect

2
G
b

2
G
b

2
G
b

2
G
b

Mem
Controller

Mem
Controller

Pa
rt

of
 H

BM

Buffer

Buffer

Figure 3: 2D ADI application datapath constructed from solver

components.

structures for accumulation in line 6 of Algo 3. But due to lim-

ited HBM ports, we must share a single HBM port between two

data structures. This limits the dataflow per data structure from/to

the HBM ports as well as the size of data structure, given a single

HBM bank has a capacity of 256MB. This final design gave the best

performance in our evaluations.

The component model in (3) can be combined with the delays

due to buffering (ping-pong buffers for the 8×8 transpose, row-to-

col, rows-to-8×8-block data flow and window buffers for stencil

computations) to obtain an application performance model. These

delays are determined by the clock cycles needed to fill the buffers

in order to start outputting the first result. Thus the full pipeline

latency for the 3D ADI application is (9):

𝐿𝑎𝑑𝑖,3𝐷 = 𝑛𝑖𝑡𝑒𝑟 ×𝑀𝐴𝑋 (𝐿𝑟ℎ𝑠+𝑥𝑦, 𝐿𝑧) (9)

𝐿𝑟ℎ𝑠+𝑥𝑦 = (𝑥𝑦/𝑣) + (2𝑣𝑥/𝑣 + 3𝑔𝑥) + (2𝑥𝑦/𝑣 + 3𝑔𝑦)+

⌈𝐵/2𝑁𝐶𝑈 ⌉ (𝑥𝑦𝑧/𝑣) (10)

𝐿𝑧 = (2𝑥𝑧/𝑣 + 3𝑔𝑧) + ⌈𝐵/2𝑁𝐶𝑈 ⌉ (𝑥𝑦𝑧/𝑣) (11)

Here, 𝑥,𝑦 and 𝑧 are the sizes of systems in each dimension, 𝑁𝐶𝑈

is the number of CUs implemented on the FPGA and 𝐵 is the total

number of 3D meshes, i.e the number of batches. The terms in (10)

account for the 3D stencil computation in RHS, Tridslv(x-dim)

including latency to transpose the 𝑥-lines, Tridslv(y-dim) includ-

ing the reading/writing 𝑦-lines from the buffered 𝑥-lines, and the

latency to process 𝐵 meshes using 𝑁𝐶𝑈 CUs respectively.

We take the maximum in (9) because the two modules need to

be synchronized, as they swap their read and write locations after

processing 𝐵/2meshes. The vectorization factor 𝑣 is 8 for our design

and 𝑔 is 32 for FP32 and 64 for FP64. A minor consideration for

obtaining improved predictions from the above model is when the

number of points per clock cycle arriving to the vectorized solvers

is different to 𝑣 due to memory bandwidth. For example if we use a

single HBM port to read two data structures and if we use a 256-bit

data path, a lower number of points 𝑝 will enter the datapath than

𝑣 . Then, replacing 𝑣 by 𝑝 is more accurate.

A similar design can be developed for the 2D ADI application,

but now the functions in the iterative loop RHS, Tridslv(x-dim)

and Tridslv(y-dim) can all be pipelined. This makes it possible to

unroll the iterative loop by some factor 𝑓𝑈 . Note that the variable 𝑢

is incremented each iteration (line 6 of Algo. 3), where the previous

value of 𝑢 must be input at the end of each unrolled iteration to

carry out this increment. However the RHS of each iteration also

consumes 𝑢 and thus we use a delay-buffer (similar to ones used in

StencilFlow [8]) implemented as an HBM FIFO to feed the previous

values of 𝑢 to the increment stage on line 6. Implementation of an

HBMFIFOwith a data access dependency distance based on the data

structures allocated on specific HBM banks makes global memory

synchronization possible in the dataflow pipelinewithout additional

HBM throughput cost. Unrolling the iterative loop reduces the total

number of data structures in external memory. Hence we are able

to assign dedicated ports for each data structure which enables

better dataflow throughput. The overall structure of the 2D design,

combining component modules is illustrated in Figure 3. A similar

illustration can be conceived for the 3D ADI application, which we

do not show here. The performance model for the 2D application

is given in (12).

𝐿𝑎𝑑𝑖,2𝐷 = (𝑛𝑖𝑡𝑒𝑟 /𝑓𝑈) × 𝐿𝑟ℎ𝑠+𝑥𝑦 (12)

𝐿𝑟ℎ𝑠+𝑥𝑦 =𝑓𝑈 × [(𝑥/𝑣) + (2𝑣𝑥/𝑣 + 3𝑔𝑥) + (2𝑥𝑦/𝑣 + 3𝑔𝑦)] +

⌈𝐵/𝑁𝐶𝑈 ⌉ (𝑥𝑦/𝑣) (13)

Pipeline latency increases with the unroll factor 𝑓𝑈 , but for large

𝐵 it results in a higher overall speedup. The size of the FIFO delay

buffer is equivalent to the total delay of RHS, Tridslv(x-dim), and

Tridslv(y-dim) : 𝑥/𝑣 + 2𝑣𝑥/𝑣 + 3𝑔𝑥 + 3𝑔𝑦 + 2𝑥𝑦/𝑣 .

Figure 4 (a) details the performance of the 2D ADI Heat diffusion

application implemented in both FP32 and FP64 on the FPGA and

compares it to execution on the GPU. The design parameters for

each are noted in the graphs. Operating frequencies are 292MHz

and 288MHz for FP32 and FP64 respectively. These improved post

implementation frequencies were possible due to multiple com-

pute units with careful SLR placement and HBM bank assignment

constraints, manually flattened loops with arbitrary word length

counters, and an optimally pipelined and vectorized design. In both

FP32 and FP64 cases the coefficients 𝑎, 𝑏 and 𝑐 are internally gen-

erated, on the FPGA. This means that only 𝑢 is read. Performance

results demonstrate the FPGA outperforming the GPU particularly

for runs with large batch sizes.

We see that the performance model accuracy is over 85% with

large batched predictions being more accurate at over 90%. The

prediction errors in the models are due to omitting a number of

minor latencies for simplicity. While the models accounts for only

the latency in loops, real synthesized circuit on the FPGA will

have additional stages to complete before a loop. These include

calculating the loop invariants and initial values and state transition

to function calls. For modeling loops, we do not account for the

hardware pipeline latency - i.e. the clock cycles required between

FIFO read and write and arithmetic hardware pipeline. However,

these can be obtained from the HLS kernel schedule viewer to

refine and improve predictions. We also do not account for latency

incurred on the first external memory transfer. All of the above

latencies are less than a few hundred clock cycles and become

insignificant when considering total runtimes of larger mesh or

batch sizes as can be seen from the above results.

Inspecting the effective bandwidth on each device as detailed in

the top two sub-tables in Table 2 provides insights into the superior

performance of the FPGA. The bandwidth is computed by counting

ICS ’22, June 28–30, 2022, Virtual Event, USA Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A. Fahmy

32x32 48x48 64x64 80x80 96x96 112x112 128x128
Mesh Size

10−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

2D ADI, FP64, v = 8, fu = 2, NCU = 3

10−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

2D ADI, FP32, v = 8, fu = 3, NCU = 3

GPU-3000B
GPU-1500B
FPGA-Pred

FPGA-3000B
FPGA-1500B

(a) 2D ADI: 120 iter.

32x32x32 80x32x32 48x48x48 80x64x64 80x80x80 96x96x96
Mesh Size

10−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

3D ADI, FP64, v = 8, NCU = 3

10−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

3D ADI, FP32, v = 8, NCU = 6

GPU-72B
GPU-24B
FPGA-Pred

FPGA-72B
FPGA-24B

(b) 3D ADI: 100 iter.

256x256 384x384 512x512 640x640 768x768 896x896
Mesh Size

10−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

Thomas–Thomas, FP32, v = 8, NCU = 6

10−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

Thomas–PCR, FP32, v = 8, NCU = 6

GPU-180B
GPU-60B
GPU-12B
FPGA-Pred

FPGA-180B
FPGA-60B
FPGA-12B

(c) 2D ADI-Tiled: 100 iter.

Figure 4: ADI Heat Diffusion application performance.

the total number of bytes transferred during the execution of each

call in Alg. 3, looking at the mesh data accessed and dividing it by

the total time taken by each call. On the GPU, we have detailed the

achieved bandwidth of the 𝑥- (Gx) and 𝑦-dim (Gy) solves. On the

FPGA we show the full bandwidth achieved in the pipeline. The

𝑥-dim bandwidth on the GPU is significantly worse due to the block

transpose operations. Such lower bandwidths are also confirmed by

László et al. [15]. We additionally confirmed the same performance

when using cuSPARSE’s cusparse<t>gtsv2StridedBatch() li-

brary function for the 𝑥-solve. The higher performance of the FPGA

can be attributed to the unrolling of the iterative loop, keeping in-

termediate results in fast on-chip memories, thus allowing higher

bandwidth utilization for the data path and the internal generation

of coefficients. The GPU tridiagonal solver library does not support

internal coefficient generation. Thus, the application writes 𝑎, 𝑏, 𝑐

and𝑢 to global memory after RHS and intermediate results also writ-

ten/read between the two Tridslv calls whereas on the FPGA these

stay on-chip. Even with modifications to the GPU library to gener-

ate coefficients internally which would improve GPU performance,

we believe the FPGA results point to a very competitive solution,

particularly when batching large meshes that can fit within the

resource constraints of the FPGA, for this application.

The first two sub-tables in Table 2 also detail the energy con-

sumption of the 2D runs. The xbutil utility was used to measure

power during FPGA execution, while nvidia-smi was used for

the GPU. The FPGA on average consumed 75W while the GPU

power draw ranged from 50W to 250W. Results indicate that the

FPGA energy consumption is approximately 5ś6× lower for this

2D problem.

Figure 4 (b) and the bottom two sub-tables in Table 2 detail the

performance of the 3D ADI heat diffusion application in FP32 and

FP64 respectively. Again we see performance trends similar to the

2D case, however we were only able to run smaller batch sizes due

to HBM memory limitations for 3D meshes. On the GPU, again,

apart from the 𝑥-dim solve, we observe good achieved bandwidth.

On the FPGA the achieved bandwidth is poorer due to no unrolling

of the iterative loop as done in the 2D case, where there are 3

CUs each unrolled by a factor of 3. The sharing of HBM ports as

described in the design of this application limits the data flow per

data structure further reducing achieved bandwidth. The energy

consumption of the FPGA is 3ś4× lower than the GPU’s.

A Thomas-Thomas based implementation for the 2D ADI-Heat

application for larger meshes can be modeled using (14):

𝐿𝑎𝑑𝑖,2𝐷,𝑡𝑖𝑙𝑒𝑑 = 𝑛𝑖𝑡𝑒𝑟 × (𝐿𝑟ℎ𝑠+𝑥 + 𝐿𝑦) (14)

𝐿𝑟ℎ𝑠+𝑥 =𝑥/𝑣 + 2𝑣𝑥/𝑣 + 3𝑔𝑥/𝑡1 + 4𝑔𝑡1 + 𝐵𝑥𝑦/𝑣 (15)

𝐿𝑦 =2𝑦𝑇𝑥/𝑣 + 3𝑔𝑦/𝑡2 + 4𝑔𝑡2 + 𝐵𝑥𝑦/𝑣 (16)

In this case, RHS and 𝑥-solve can be pipelined but 𝑦-solve cannot

as we are computing łtilesž along the 𝑦-dim lines, a large amount

of on-chip memory would be required to transpose the mesh. The

explicit stencil computation in RHS does not require tiling as we are

not processing very large meshes. If the tile sizes for the Thomas-

Thomas solvers are selected to be 𝑡1 and 𝑡2 then the reduced system

sizes will be 2𝑡1 and 2𝑡2. Equation (15) accounts for the latency

for RHS with 𝑥-dimension solve where the terms correspond to

the latencies of the stencil, the data path, modified Thomas solve,

and the reduced solve. Similarly (16) gives the 𝑦-dimension solve

latency. Note that here we have used 𝑇𝑥 (this is different to 𝑡1) as

the tile size for the 𝑦-dim data path where we buffer 𝑇𝑥 × 𝑦 sized

planes. Note also that we have selected the number of interleaved

systems and interleaved reduced systems to be equal (i.e. 𝑔 = 𝑔𝑟

High Throughput Multidimensional Tridiagonal System Solvers on FPGAs ICS ’22, June 28–30, 2022, Virtual Event, USA

Table 2: ADI Heat Diffusion App. : Achieved Bandwidth (GB/s) and

Energy (J) on the FPGA (F) and GPU(G).

2D FP32 (120 iterations, 𝑓𝑈 = 3)

Batch Size 1500 3000

Bandwidth Energy Bandwidth Energy

Mesh F Gx Gy F G F Gx Gy F G

322 501 134 418 1 7 563 164 493 2 13
642 524 184 528 3 23 556 199 553 6 42
1282 602 207 563 12 86 620 206 565 23 168

2D FP64 (120 iterations, 𝑓𝑈 = 2)

Batch Size 1500 3000

Bandwidth Energy Bandwidth Energy

Mesh F Gx Gy F G F Gx Gy F G

322 360 184 508 2 10 395 196 543 4 21
642 380 203 557 9 42 399 203 529 18 88
1282 411 204 517 34 179 422 210 551 67 355

3D FP32 (100 iterations)

Batch Size 24 72

Bandwidth Energy Bandwidth Energy

Mesh F Gx Gy Gz F G F Gx Gy Gz F G

32 × 32 × 32 218 119 218 288 1 4 266 172 384 493 3 9
48 × 48 × 48 288 171 355 475 3 11 338 198 399 551 7 31
96 × 96 × 96 346 210 429 568 18 78 358 211 425 563 53 241

3D FP64 (100 iterations)

Batch Size 24 72

Bandwidth Energy Bandwidth Energy

Mesh F Gx Gy Gz F G F Gx Gy Gz F G

32 × 32 × 32 201 165 358 445 2 6 239 193 420 527 6 17
48 × 48 × 48 242 194 401 536 7 20 267 207 420 554 18 59
96 × 96 × 96 271 205 426 550 47 155 276 211 442 565 139 464

in relation to (7)). The final term in (15) and (16) are the latencies

for processing a batch of B systems. Replacing the reduced system

solve with the PCR algorithm is also possible where the 4𝑔𝑡1 and

4𝑔𝑡2 terms in (15) and (16) then become 𝑙𝑜𝑔(2𝑡1) × (2𝑡1 + 𝑙) and

𝑙𝑜𝑔(2𝑡2) × (2𝑡2 + 𝑙). Here, 𝑙 is circuit pipeline latency as discussed

in Section 3.

Figure 4 (c) presents the performance of the 2DADI heat diffusion

application on large meshes solved using Thomas-PCR and Thomas-

Thomas hybrid implementations. Again we compare with the same

mesh sizes solved on the GPU. Due to the RHS and Tridslv(x-dim)

being pipelined together, the FPGA achieves better HBM band-

width utilization. The GPU also achieves good bandwidth utiliza-

tion where it reaches bandwidth levels similar to batched smaller

meshes (see Table 3 for for Thomas-PCR; Thomas-Thomas gave

similar results). The FPGA can be seen to be 2ś3× more energy

efficient than the GPU for the largest mesh sizes.

4.2 Stochastic Local Volatility

The second application we evaluate comes from computational

finance. It implements a stochastic local volatility (SLV) model,

which describe asset price processes, particularly foreign exchange

rates [25]. A batched GPU implementation based on a second order

finite-difference scheme was developed for this problem using the

OPS DSL by Reguly et al. [22]. It is a 2D application implemented in

Table 3: ADI Heat Diffusion App (2D FP32) ś Large meshes,

Thomas-PCR: 100 iterations, Bandwidth (GB/s), Energy (J)

on the FPGA (F) and GPU (G).

Batch Size 60 180

Bandwidth Energy Bandwidth Energy

Mesh F Gx Gy F G F Gx Gy F G

2562 206 117 238 5 14 217 186 464 13 35
5122 218 177 400 17 48 222 210 544 51 128
8962 220 204 503 53 142 222 214 566 156 418

0.00 0.01 0.02 0.03 0.04
Runtime (seconds)

30

300

3000

Nu
m

be
r o

f B
at

ch
es

0.0017

0.0047

0.0335

0.0083

0.0142

0.0310
Mesh : 40x20, itr= 11

0.00 1.00 2.00
Runtime (seconds)

0.0531

0.2372

2.0776

0.0607

0.2024

1.2022
Mesh : 100x50, itr= 104

GPU
FPGA
FPGA-Pred

Figure 5: SLV application performance.

FP64 precision. Its high-level algorithm is detailed in Algo. 4. The

Algorithm 4: 2D Heston SLV Backward

1: for 𝑖 = 0, 𝑖 < 𝑛𝑖𝑡𝑒𝑟 , 𝑖 + + do

2: hv_pred0(), hv_matrices()

3: Tridslv(x-dim)

4: hv_pred1(), Tridslv(y-dim)

5: hv_pred2(), Tridslv(x-dim)

6: hv_pred3(), Tridslv(y-dim)

7: end for

application implements a Hundsdorfer-Verwer (HV) method, (also

based on the ADI method) for time integration. The Rannacher

smoothing available in the original application has been switched

off in our evaluation. The hv_pred* and hv_matrices are explicit

loops each using 10 point stencils, requiring a window buffer im-

plementation [13] for data reuse. The 9 kernels in Algo. 4 were

implemented as separate hardware modules, pipelining the compu-

tation within the iterative loop. hv_matrices generates a number

of 2D coefficients AX,BX,CX,AV,BV,CV and 1D coefficient EV for

the Tridslvs. Coefficients AX,BX,CX then needs to be input to (con-

sumed by) Tridslv(x-dim) kernels and coefficients AV,BV,CV and

EV to Tridslv(y-dim) kernels. A GPU implementation consists of

these nine kernels, moving data through global memory. Again, it

is not possible to fuse kernels to reduce global memory accesses for

this bandwidth limited application. The large number of kernels

inside the iterative loop incur significant kernel call overhead and

data movement through the fixed data path increases latency on

the GPU for processing meshes with smaller batch sizes, leading to

poor bandwidth utilization.

On FPGA, generated coefficients are consumed at different stages

of the pipeline. However other inputs to the Tridslv calls come

through the computation of this multi-stage pipeline. Therefore

ICS ’22, June 28–30, 2022, Virtual Event, USA Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A. Fahmy

Table 4: SLV App: Bandwidth (GB/s) and Energy (J).

Bandwidth Energy

Batch FPGA GPU-x GPU-y FPGA GPU

40×20 mesh: 11 iterations

30 55.24 3.04 28.01 0.13 0.45
300 202.31 16.48 176.51 0.35 1.02
3000 281.06 123.84 327.65 2.51 4.75

100×50 mesh: 104 iterations

30 124.63 51.28 109.65 3.98 3.76
300 278.87 235.22 238.34 17.79 22.26
3000 318.36 421.77 429.21 155.82 216.40

large FIFO delay buffers are required to keep synchronization (i.e.

avoid pipeline stalling). As such we opt to regenerate the above

coefficients at separate stages, essentially duplicating the circuitry.

This results in the generation of coefficients AX,BX,CX, for the

Tridslv(x-dim), being fused to hv_pred0() and hv_pred2() and

the generating of coefficients AV,BV,CV,EV, for Tridslv(y-dim),

being fused to hv_pred1() and hv_pred3(). This results in a total

of 8 hardware modules, requiring significantly smaller delay buffers

than if we implemented the original set of kernels. The performance

model for SLV is given in (17):

𝐿𝑠𝑙𝑣 = 𝑛𝑖𝑡𝑒𝑟 [4 × (2𝑥) + 2 × (3𝑔𝑥)+

2 × (3𝑔𝑦 + 2𝑥𝑦) + ⌈𝐵/𝑁𝐶𝑈 ⌉𝑥𝑦] (17)

Here 𝑔 is 64 as SLV uses FP64. The first term is the combined in-

put/output latency for the four explicit stencil computations in

hv_pred*. The second and third terms account for the Tridslv

(x-dim) and Tridslv(y-dim) calls respectively, including the read

or write y-lines from the buffered 𝑥-lines. The final term is the la-

tency for processing a batch size of 𝐵, 2D meshes. The number of

CUs, 𝑁𝐶𝑈 for SLV on the FPGA is 3, given the considerably larger

amount of DSP and memory resources required for the application,

particularly due to its use of FP64 precision. The FIFO delay-buffer

size calculation was aided by the Xilinx HLS tools where the ex-

act datapath pipeline latency was estimated to obtain buffer sizes

adequate for an implementation.

The motivation for batched solves of multi-dimensional tridiag-

onal systems primarily comes from financial computing where, for

example, computing prices of financial options and managing risk

by hedging options leads to the need to solve Algo. 4 type applica-

tions with different sets of coefficients [22]. Additionally carrying

out extensive speculative scenarios required by regulators under

various market conditions to evaluate a bank’s exposure means

that there are large number of options in the order of thousands to

hundreds of thousands to be computed every day. Such workloads

would entail large numbers of roughly identical PDE problems to

be solved which are well suited to be batched together.

Figure 5 and Table 4 detail the runtime, bandwidth, and energy

performance of the SLV application implementation. Only two

specific mesh sizes were available from the authors of the origi-

nal code [22], each was batched up to 3000 batches of 2D meshes

for this evaluation. The application is significantly more complex

given the additional explicit stencil loops as well as the tridiagonal

solvers. The runtimes here were obtained with the FPGA operating

at 253MHz. As can be seen from the figures, the FPGA in some

cases is faster than the V100 GPU, but for the largest batch sizes

we attempted here, it is 8%-70% slower than the GPU. However the

FPGA solution is over 30% more energy efficient for large batch

solves compared to the GPU. The achieved bandwidth on the FPGA

is approximately at the same level as the 2D ADI FP64 version.

Runtime predictions from the model were also observed to be over

90% accurate for all cases.

5 DISCUSSION

The experiments in Section 4.1 show better performance on the

Xilinx Alveo U280 FPGA compared to the Nvidia V100 GPU for ADI

2D and ADI 3D applications in both FP32 and FP64 formats. Key

optimizations possible on the FPGA, such as pipelining and fusing

coefficient generation with tridiagonal solvers leads to this perfor-

mance gain. These optimizations helped to achieve higher effective

bandwidth on the FPGA although U280 HBM’s maximum theo-

retical bandwidth (460GB/s) is close to half of the V100 HBM (900

GB/s). Additionally, lower FPGA resource consumption due to these

optimization makes it possible to scale to multiple compute units on

the Alveo U280. Implementation of an 8×8 transpose on the FPGA

enables higher throughput for Tridslv(x-dim) making memory

accesses coalesced, while the GPU implementation using shared

memory based transpose and Tridslv to address non-coalesced ac-

cesses suffers significant performance loss. In Section 4.2, the FPGA

demonstrates competitive performance with the GPU for the SLV

application. However, the computationally intensive complex co-

efficient calculation using 10-point stencils makes it hard to fuse

with the Thomas solver and results in higher FPGA resource usage,

limiting the number of implementable compute units. Due to this,

the GPU performs better than the FPGA for the SLV application

on larger meshes. Future FPGAs with more DSP blocks or floating

point primitives will provide better performance than the Xilinx

Alveo U280. However, SLV with smaller meshes/batches is better

matched to the FPGA due to the low latency FPGA data move-

ment as well as lower kernel call overhead as the iterative loop is

implemented within the FPGA kernel.

6 RELATED WORK

Earlier work implementing tridiagonal system solvers on FPGAs

such as by Oliveira et al. [19], Warne et al. [29] and Zhang et

al. [32] used low-level Hardware Description languages (HDL) such

as VHDL or Verilog for implementing the Thomas algorithm. These

designs were restricted to solving 1D or 1D batched tridiagonal

systems, instead of full multi-dimensional applications. Oliveira et

al. [19] pipelined both the forward and backward loops and applied

data flow between them and demonstrated the implementation for

a smaller 163 mesh based application using only on-chip memory.

With the introduction of High-Level synthesis (HLS) tools, a

number of more recent works [16ś18, 30] implemented the Thomas,

PCR, and Spike algorithms on FPGA using HLS tools. Many of

these did not demonstrate the solver working on full applications,

with the exception of László et al. in 2015 [16] which compared a

one factor Black-Scholes option pricing equation using explicit and

implicit methods on different architectures such as multi core CPUs,

GPUs, and FPGAs. Their implementation, based on the Thomas

algorithm, targets a Xilinx Virtex 7 FPGA and effectively pipelines

High Throughput Multidimensional Tridiagonal System Solvers on FPGAs ICS ’22, June 28–30, 2022, Virtual Event, USA

both forward and backward loops but was not able to apply data

flow between these two steps and results showed an Nvidia K40

GPU significantly outperforming the FPGA.

Macintosh, et al. [18] used OpenCL targeting an Altera Stratix

V FPGA to implement the PCR and SPIKE algorithms, showing

comparable performance to an Nvidia Quadro 4000 GPU, not in-

cluding reconfiguration time for the spike kernels. Later, Macintosh,

et al. [17] used OpenCL to develop oclspkt, a library that imple-

ments tridiagonal systems solvers targeting FPGAs, GPUs, and

CPUs. oclspkt uses the truncated spike algorithm for diagonally

dominant tridiagonal matrices, and as such does not give exact

solutions. Their results show oclspkt on an Altera Arria 10GX

FPGA performing marginally slower than an Nvidia Quadro M4000

GPU but providing better energy efficiency. The Xilinx library also

implements a Douglas ADI solver [10] a multi-dimensional solver

based on their PCR based solver [4].

In comparison, the HLS-based synthesis presented in this paper,

targets the solution of multiple tridiagonal systems and in multiple

dimensions as commonly found in real-world applications. It uses

the Thomas algorithm demonstrating that together with techniques

such as batching of systems [13], high throughput for small and

medium sized systems can be achieved. The Thomas algorithm uses

fewer resources than the more computationally intensive PCR algo-

rithm. For larger systems that do not directly fit in a single FPGA,

we develop novel Thomas-Thomas and Thomas-PCR solvers to

handle a number of partitioned systems and then a reduced system

solve to exploit the limited available on-chip memory resources of

a single FPGA.

Several recent works have also exploited HBM in modern FP-

GAs [12, 14, 24] showing performance gains and energy savings

for memory bandwidth bound applications compared to traditional

architectures and FPGA devices without HBM. Multi-dimensional

tridiagonal solvers are also bandwidth bound, but, to our knowl-

edge, no previous work has explored the use of HBM capable FPGAs

to accelerate them, as we have done through the use of parallel com-

pute units. To our knowledge, the 2D/3D ADI and SLV applications

developed in this work, motivated by real-world implicit problems

on FPGAs are also novel; SLV being one of the few non-trivial

applications using multi-dimensional tridiagonal solvers presented

in the literature. The Thomas based solver developed in this pa-

per gives higher performance than the current PCR based Xilinx

library, as shown in Section 4. Additionally, the analytical perfor-

mance model and the comparison with a state-of-the-art GPU based

tridiagonal solver library gives a much needed frame of reference

for evaluating our FPGA design’s performance, providing insights

into the feasibility and profitability of an FPGA design for realistic

workloads.

7 CONCLUSION

We have developed a new FPGA-based tridiagonal solver library

aimed at solving multiple multi-dimension tridiagonal systems on

FPGAs. Key new features of the library include dataflow techniques

and optimizations for gaining high throughput, through batching

multiple system solves, replication of compute units, and utiliza-

tion of High Bandwidth Memory on modern FPGAs. The Thomas

algorithm was shown to be effective, even with its loop carried

dependencies, due to its simplicity and lower resource consump-

tion. This somewhat subverts the conventional expectation of the

more parallel PCR or SPIKE algorithms being better suited for high

performance on parallel architectures. Our library significantly

outperforms the Xilinx tridiagonal library that uses the PCR al-

gorithm, for larger batch sizes. However, for larger mesh sizes a

hybrid Thomas-PCR or Thomas-Thomas solution was required to

overcome the limitations of on-chip memory and demonstrated

considerable performance with batched configurations.

Two representative applications, (1) a heat diffusion problem

based on the ADI method and (2) a stochastic local volatility (SLV)

model from the financial computing domain, that rely on the solu-

tion of multi-dimensional tridiagonal systems were implemented

using the new library on a Xilinx Alveo U280 FPGA. As part of the

design process an analytical performance model was developed to

estimate runtime performance of the FPGA designs and assist in

design space evaluations. The FPGA performance was compared to

optimized solutions of the same applications on a modern Nvidia

Tesla V100 GPU, showing competitive performance, sometimes

even surpassing the performance on the GPU. This was due to

designs creating longer pipelines keeping intermediate results on

fast FPGA on-chip memory.

Even when runtime is inferior to the GPU, significant energy

savings, over 30% for the most complex application (SLV) with large

batch sizes, were observed. Considering the motivating real-world

scenario for such an application from the financial computing do-

main, such energy savings point to a significant operational cost

benefit. The analytical performance model provides over 85% ac-

curacy illustrating its significant utility in developing profitable

FPGA designs. The results showcase a key class of applications and

their characteristics where the FPGA is able to provide competitive

performance on-par with GPUs, with the added benefit of large en-

ergy savings. The techniques and optimizations required to achieve

high performance on FPGAs, as demonstrated in this work, provide

key insights into the feasibility and profitability of using FPGAs in

high performance computing workloads.

The FPGA library, the 2D/3D ADI heat diffusion application, and

optimized GPU source code developed in this work are available

as open source software at [5], including additional results from

a Xilinx Alveo U50 FPGA, which further support the conclusions

in this paper. Future work will explore the use of FPGA hardware

from Intel, the other major FPGA device vendor.

ACKNOWLEDGMENTS

Gihan Mudalige was supported by the Royal Society Industry Fel-

lowship Scheme (INF/R1/1800 12). István Reguly was supported by

National Research, Development and Innovation Fund of Hungary

(PD 124905), under the PD_17 funding scheme. We are grateful to

Xilinx for their hardware and software donations and Jacques Du

Toit and Tim Schmielau at NAG UK for their advice and making

the SLV application available for this work.

REFERENCES
[1] 2020. Nvidia V100 Data Sheet. https://images.nvidia.com/content/technologies/

volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf.
[2] 2020. Tridsolver Library. https://github.com/OP-DSL/tridsolver.
[3] 2020. Vitis High-Level Synthesis User Guide. https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf.

 https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
 https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://github.com/OP-DSL/tridsolver
 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-viti s-hls.pdf
 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-viti s-hls.pdf

ICS ’22, June 28–30, 2022, Virtual Event, USA Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A. Fahmy

[4] 2020. Vitis Quantitative Finance Library V.2020.2. https://xilinx.github.io/Vitis_
Libraries/quantitative_finance/2020.2/.

[5] 2021. Batched Tridiagonal Systems Solver Library for FPGAs. [https://github.
com/Kamalavasan/Tridsolver-FPGA].

[6] 2021. cuSPARSE API Reference. [https://docs.nvidia.com/cuda/cusparse/index.
html].

[7] D. Balogh, T. Flynn, S. Laizet, G. R. Mudalige, and I. Reguly. 2021. Scalable Many-
Core Algorithms for Tridiagonal Solvers. Computing in Science and Engineering
24, 01 (2021), 26ś35.

[8] Johannes de Fine Licht, Andreas Kuster, Tiziano De Matteis, Tal Ben-Nun, Do-
minic Hofer, and Torsten Hoefler. 2021. StencilFlow: Mapping Large Stencil
Programs to Distributed Spatial Computing Systems. , 315ś326 pages.

[9] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. 2020. FBLAS:
Streaming Linear Algebra on FPGA. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (Atlanta,
Georgia) (SC ’20). IEEE Press, Article 59, 13 pages.

[10] Jim Douglas and James E Gunn. 1964. A General Formulation of Alternating
Direction Methods. Numèrische mathèmatik 6, 1 (1964), 428ś453.

[11] Walter Gander and Gene H Golub. 1997. Cyclic ReductionÐHistory and Applica-
tions. Scientific computing (Hong Kong) 7385 (1997).

[12] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Acceler-
ating Graph Linear Algebra on HBM-Equipped FPGAs. In IEEE/ACM International
Conference On Computer Aided Design (ICCAD).

[13] Kamalavasan Kamalakkannan, Gihan R. Mudalige, István Z. Reguly, and Suhaib A.
Fahmy. 2021. High-Level FPGA Accelerator Design for Structured-Mesh-Based
Explicit Numerical Solvers. In IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS). 1087ś1096.

[14] Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis,
and Gustavo Alonso. 2020. High Bandwidth Memory on FPGAs: A Data Ana-
lytics Perspective. In International Conference on Field-Programmable Logic and
Applications (FPL).

[15] Endre Laszlo, Mike Giles, and Jeremy Appleyard. 2016. Manycore Algorithms for
Batch Scalar and Block Tridiagonal Solvers. ACM Transactions on Mathematical
Software (TOMS) 42, 4 (2016), 1ś36.

[16] Endre László, Zoltán Nagy, Michael B. Giles, István Reguly, Jeremy Appleyard,
and Peter Szolgay. 2015. Analysis of Parallel Processor Architectures for the
Solution of the Black-Scholes PDE. In IEEE International Symposium on Circuits
and Systems (ISCAS). 1977ś1980.

[17] H. Macintosh, Jasmine Banks, and N. Kelson. 2019. Implementing and Evaluating
an Heterogeneous, Scalable, Tridiagonal Linear System Solver with OpenCL to
Target FPGAs, GPUs, and CPUs. International Journal of Reconfigurable Comput-
ing (2019).

[18] H. J. Macintosh, D. J. Warne, N. A. Kelson, J. E. Banks, and T. W. Farrell. 2016.
Implementation of Parallel Tridiagonal Solvers for a Heterogeneous Comput-
ing Environment. In Proceedings of the Biennial Computational Techniques and
Applications Conference (CTAC), Vol. 56. C446śC462.

[19] Filipe Oliveira, C. Silva Santos, F. A. Castro, and José C. Alves. 2008. A Custom
Processor for a TDMA Solver in a CFD Application. In Reconfigurable Com-
puting: Architectures, Tools and Applications, Roger Woods, Katherine Compton,
Christos Bouganis, and Pedro C. Diniz (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 63ś74.

[20] Donald W Peaceman and Henry H Rachford, Jr. 1955. The Numerical Solution of
Parabolic and Elliptic Differential Equations. Journal of the Society for industrial
and Applied Mathematics 3, 1 (1955), 28ś41.

[21] Eric Polizzi and Ahmed H. Sameh. 2006. A Parallel Hybrid Banded System Solver:
the SPIKE Algorithm. Parallel Comput. 32, 2 (2006), 177ś194.

[22] Istvan Z. Reguly, Branden Moore, Tim Schmielau, Jacques du Toit, and Gihan R.
Mudalige. 2019. Batch solution of small PDEs with the OPS DSL. In High Perfor-
mance Computing, Michèle Weiland, Guido Juckeland, Sadaf Alam, and Heike
Jagode (Eds.). Springer International Publishing, Cham, 124ś141.

[23] Bajaj Ronak and Suhaib A Fahmy. 2015. Mapping for maximum performance
on FPGA DSP blocks. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35, 4 (2015), 573ś585.

[24] Gagandeep Singh, Dionysios Diamantopoulos, ChristophHagleitner, Juan Gomez-
Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal. 2020. NERO: A Near
High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling.
In International Conference on Field-Programmable Logic and Applications (FPL).
9ś7.

[25] G. Tataru and T. Fisher. 2010. Stochastic Local Volatility. Quantitative Development
Group, Bloomberg Version 1 (Feb 2010).

[26] Llewellyn Thomas. 1949. Elliptic Problems in Linear Differential Equations Over
a Network: Watson Scientific Computing Laboratory. Columbia Univ., NY (1949).

[27] Pedro Valero-Lara, Ivan Martínez-Pérez, Raül Sirvent, Xavier Martorell, and An-
tonio J. Peña. 2018. Nvidia GPUs Scalability to Solve Multiple (Batch) Tridiagonal
Systems Implementation of cuThomasBatch. In Parallel Processing and Applied
Mathematics, Roman Wyrzykowski, Jack Dongarra, Ewa Deelman, and Konrad
Karczewski (Eds.). Springer International Publishing, Cham, 243ś253.

[28] Xinliang Wang, Yangtong Xu, and Wei Xue. 2014. A Hierarchical Tridiagonal Sys-
tem Solver for Heterogeneous Supercomputers. In Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems. 69ś76.

[29] David Warne, Neil Kelson, and Ross Hayward. 2012. Solving Tri-diagonal Linear
Systems Using Field Programmable Gate Arrays. In Proceedings of the Interna-
tional Conference on Computational Methods, Y Gu and S Saha (Eds.). Queensland
University of Technology, Australia.

[30] David J. Warne, Neil A. Kelson, and Ross F. Hayward. 2014. Comparison of High
Level FPGA Hardware Design for Solving Tri-diagonal Linear Systems. Procedia
Computer Science 29 (2014), 95ś101.

[31] Xilinx Inc. 2020. Alveo U280 Data Center Accelerator Card Data Sheet. Xilinx Inc.
v1.3.

[32] Wei Zhang, Vaughn Betz, and Jonathan Rose. 2012. Portable and Scalable FPGA-
Based Acceleration of a Direct Linear System Solver. ACM Trans. Reconfigurable
Technol. Syst. 5, 1, Article 6 (March 2012), 26 pages.

https://xilinx.github.io/Vitis_Libraries/quantitative_finance/2020.2/
https://xilinx.github.io/Vitis_Libraries/quantitative_finance/2020.2/
https://github.com/Kamalavasan/Tridsolver-FPGA
https://github.com/Kamalavasan/Tridsolver-FPGA
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html

	Abstract
	1 Introduction
	2 Background
	3 FPGA Architecture Design
	3.1 Small and Medium System Solves
	3.2 Larger System Solves

	4 Performance Evaluation
	4.1 ADI Heat Diffusion Application
	4.2 Stochastic Local Volatility

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

