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Abstract

Nowadays, surveillance cameras are widely installed in public places

for security and law enforcement, but the video quality may be low due

to limited transmission bandwidth and storage capacity. In this paper,

we propose a gait recognition method for extremely low quality videos,

which have a frame-rate at one frame per second (1 fps) and resolution

of 32 × 22 pixels. Different from popular temporal reconstruction-based

methods, the proposed method uses the Average Gait Image (AGI) over

the whole sequence as the appearance-based feature description. Based

on the AGI description, we employ a large number of weak classifiers to
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reduce generalization errors. The performance can be further improved

by incorporating the model-based information into the classifier ensemble.

We find that the performance improvement is directly proportional to the

average disagreement level of weak classifiers (i.e., diversity), which can be

increased by using the model-based information. We evaluate our method

on both indoor and outdoor databases (i.e., the low quality versions of OU-

ISIR-D and USF databases), and the results suggest that our method is

more general and effective than other state-of-the-art algorithms.

1 Introduction

Gait is a behavioural biometric characteristic which has been successfully used

for remote human identification. Compared with recognition techniques based

on other biometric characteristics like fingerprint or iris, gait recognition can

be applied at a larger distance and without the cooperation from subjects.

However, several factors may affect the performance of automatic gait recog-

nition systems. These factors can be roughly divided into three categories:

1) environmental, e.g., walking surface, camera viewpoint, occlusion, etc., 2)

subject-related, e.g., shoe type, carrying condition, clothing, speed, etc., and 3)

video-quality-related, e.g., low frame-rate or low resolution. Nowadays, surveil-

lance cameras are widely installed in public places such as airports, government

buildings, streets and shopping malls to prevent criminal activities. However,

the video quality may be low due to limited transmission bandwidth and storage

capacity. The corresponding gait sequences in such low quality videos may have

much lower resolution if subjects are far away from the surveillance cameras,

and much fewer ”clean” gait frames available if subjects are significantly suffered

from the occlusions in the crowded areas. The lack of frames may have a similar

effect as extremely low frame-rate (e.g., 1 fps). As such, it is desirable to pro-
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pose gait recognition algorithms that are robust to low quality gait videos. In

[1], phase synchronisation was used, and gait probe videos with low frame-rate

were matched with high frame-rate gallery videos. This approach fails whenev-

er both the probe and gallery samples are from low frame-rate videos. Several

temporal reconstruction-based methods were proposed to deal with such dual

low frame-rate problem. In [2], Al-Huseiny et al. proposed a level-set morphing

approach for temporal interpolation. In [3], a temporal Super Resolution (SR)

method was employed to build a high frame-rate gait sequence period based on

multiple periods of low frame-rate gait sequences. Based on [3], Akae et al. [4]

applied an exemplar of high frame-rate image sequences to improve the tempo-

ral SR quality. A unified framework of example-based and reconstruction-based

periodic temporal SR was proposed in [5]. It works well for gait recognition from

(dual) extremely low frame-rate videos (with small gait fluctuations). Most of

these works attempt to recover the high frame-rate gait sequences in the first

place. However, in the applications of human identification given extremely

low frame-rate videos (e.g., 1 fps), they either have low performance due to the

generated high levels of reconstruction artifacts [2, 4], or have to assume that

the amount of motion among the gait periods is the same, which is not feasible

when there are large gait fluctuations [5].

Instead of using the popular temporal reconstruction-based concept, which

may have the afore-mentioned problems, in this work we use the average gait

image over the whole sequence to compute features both for biometric reference

and biometric probe. A large number of weak classifiers are generated and

combined to reduce generalization errors. The main differences between this

work and our previous work [6] can be summarised as follows: 1) We fuse

model-based information to further enhance the ensemble accuracy, and study

the performance gain from the perspective of individual classifier accuracy and
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the diversity among them. 2) More experiments have been performed and more

results are reported.

The remainder of this paper is organised as follows: Section 2 briefly reviews

the related work and highlights the main contributions. The proposed method is

demonstrated in Section 3. In Section 4, the method is experimentally evaluated,

and a comparison with other methods is also provided. Conclusions are drawn

in Section 5.

2 Related Work and Proposed Advances

Gait recognition methods can be roughly divided into two categories: model-

based and appearance-based approaches. Model-based methods(e.g.,[7, 8]) use

human body parameters as features for recognition, while appearance-based

methods are more general, and most of them perform classification based on pix-

el intensities(e.g.,[5, 6, 9–16]). Compared with model-based methods, appearance-

based approaches can also work well with relatively low resolution data when

body parameters are difficult to estimate. Gait Energy Image (GEI) [13] is one

of the most popular appearance-based feature description due to its simplicity

and effectiveness. GEI encodes a gait cycle of binarised aligned silhouettes into

a grayscale image through an averaging operation which can smooth the seg-

mentation errors, and also significantly reduce the computational cost. Average

Gait Image (AGI) [16] has similar properties to GEI. It is the average image

over the whole gait sequence, instead of over a single gait cycle. Compared

with GEI, there is no requirement for gait cycle detection, which is difficult to

perform given the low frame-rate [6]. Several silhouettes and their AGI samples

(derived from extremely low quality videos) from the OU-ISIR-D [14] and USF

[15] databases are shown in Fig. 1.

However, direct AGI comparison makes the classification process prone to
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Figure 1: Extremely low quality gait sequences (derived from videos with frame-
rate at 1 fps and resolution of 32×22 pixels). Top/middle row: from the indoor
OU-ISIR-D [14] database with low/large gait fluctuations; bottom row: from
the outdoor USF database [15]. In each row, the rightmost image is the AGI
corresponding to the whole gait sequence.

errors when covariate factors exist (e.g., shoe, camera viewpoint, carrying con-

dition, clothing, speed, etc.). Various gait recognition algorithms have been

proposed, which may be robust to one or more covariate factors (e.g., [5, 6, 9–

13]). Out of them, Random Subspace Method (RSM) is one of the most effective.

RSM was initially proposed by Ho [17] to build random decision forests and it

was applied to face recognition by Wang and Tang [18]. Guan et al. applied

this concept to gait recognition [10]. Since the effect of unknown covariate fac-

tors on a query gait is unpredictable, the pre-collected gallery data (capture

in a certain walking condition) used for training can be less representative. In

this case, overfitting to the less representative training data can be the main

reason that hamper the performance of the learning-based algorithms [9]. By

combining a large number of weak classifiers, the generalization errors can be
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significantly reduced [6, 9–11]. RSM is a general framework which is robust to

a large number of covariates such as shoe, carrying condition, (small changes

in) camera viewpoint [10], clothing [11], speed [9], etc. However, RSM’s per-

formance is limited when intra-class variations are extremely large (e.g., due to

elapsed time). Given that every biometric modality may have its upper bound

in terms of distinctiveness, multimodal fusion can be a viable solution[19]. In

light of this, multimodal-RSM was proposed in [12], by using face information to

reinforce the gait-based weak classifiers, thus reducing the effect of the elapsed

time covariate. Although the results suggest that face information [12, 20] from

surveillance cameras is useful to some extent for identifying subjects, when

subjects are too far away from the camera with extremely low resolution, face

information may become unreliable.

For classifier ensembles (such as RSM), the diversity of the predictions (i.e.,

predicted labels by the base classifiers) is important and can be measured by

means of different metrics [21]. One of the most popular metrics is the pair-wise

disagreement measure, which is directly proportional to the number of different

outputs (correct or wrong) between any pair of base classifiers in the whole

multiple classifier system [21]. This measure was initially proposed by Skalak

[22]. Ho [17] applied it to random decision forests. In this work, we use this

metric to explore the relationship between diversity and ensemble accuracy. Our

contributions can be summarised as follows:

1. The difference between the gallery and probe (due to extremely low quali-

ty) is analysed as a similar effect caused by normal covariate (such as car-

rying condition), which can be solved using the RSM concept. We further

improve the ensemble performance by using the model-based information

to strengthen the RSM-based weak classifiers. The experimental results

suggest that our method is more general and effective than other methods.
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2. This work demonstrates an effective way of fusing model-based methods

and appearance-based methods. Since both information can be derived

from the same gait video, this is especially useful when the footage quality

is extremely low with other modalities/information unavailable.

3. We study three metrics in the classifier ensemble, i.e., individual classifier

accuracy, ensemble accuracy, and diversity. From the perspective of indi-

vidual classifier accuracy and diversity, we explain the performance gain

(i.e., enhanced ensemble accuracy) through incorporating model-based in-

formation into RSM.

3 Proposed Method

In this section, we first introduce how to use RSM [6] for feature extraction,

then we propose two simple model-based methods for extremely low quality

videos. Model-based information can be used to enhance the weak classifiers

without sacrificing the diversity of the whole multiple classifier system. Finally,

the diversity measurement used to evaluate our system is described.

3.1 RSM

In this work, we use AGI [16] as the appearance-based feature description. Given

a sequence with T gait frames Ft(t = 1, 2, ..., T ), AGI is defined as:

AGI(x, y) =
1

T

T∑
t=1

Ft(x, y). (1)

In extremely low frame-rate environments (e.g., 1 fps gait videos), the major

benefit of using AGI is that the gait period, which is difficult to estimate, is

not required. However, when the video recording time is also short, the major

problem is the lack of frames (e.g., T = 5 frames for a sequence), which makes
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the averaging operation less effective. For example, when the walking starting

stances of the probe and reference sequence are different, through averaging

operation, although the static parts (e.g., head) can be relatively stable [6], the

dynamic parts (e.g., legs or arms) can be rather diverse. Assuming such effect

caused by extremely low frame-rate are intra-class variations that the gallery

data fails to capture and in this case, a general model based on RSM concept

[10] can be used to reduce such generalization errors.

Given c classes/gait sequences in the gallery, there are c AGIs. Let m be

the pixel number of an AGI, after concatenating each two-dimensional AGI,

the gallery can be represented as A = [a1, a2, ..., ac] ∈ Rm×c. Then the scatter

matrix S can be estimated:

S =
1

c

c∑
i=1

(ai − µ)(ai − µ)T , (2)

where µ =
1

c

∑c
i=1 ai. The eigenvectors of S can be computed and the leading

v eigenvectors are retained as candidates to span the random subspaces.

L random subspaces can be generated and each projection matrix (e.g.,

feature extractor) is formed by randomly selecting s eigenvectors (from the v

candidates). Let the projection matrix be Rl ∈ Rs×m, l ∈ [1, L], and each

gallery sample ai ∈ Rm, i ∈ [1, c] can be projected as L sets of coefficients

αl
i ∈ Rs, l = 1, 2, ..., L as the new gait representations:

αl
i = Rlai, l = 1, 2, ..., L, i ∈ [1, c]. (3)

During a comparison trial, for the lth subspace first Rl is used for feature ex-

traction, and then Euclidean distance is adopted to measure the dissimilarity.

For example, the distance between a query AGI x ∈ Rm and a certain class
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Figure 2: The process of generating feature vectors for model-based methods.

αl
i, i ∈ [1, c] is:

d(x, αl
i) = ‖Rlx− αl

i‖, i ∈ [1, c], l ∈ [1, L], (4)

which can be updated using the model-based information for further processing.

3.2 Model-based Method for Low Quality Videos

In low resolution environments (e.g., 32 × 22 pixels per frame, see Fig. 1), it

is difficult to estimate the body parameters that are used as classical model-

based features, e.g., angles of hip and thigh [8], or stride and leg length [7],

etc. For gait images with poor segmentation quality, in [23] Kale et al. used

the silhouette widths (of each row) as model-based features, which are easy to

estimate.

Motivated by [23], we use widths from the binarised aligned silhouette as

model-based features, under the assumption that low resolution and poor seg-

mentation quality may have similar effect on gait images. We also employ the

widths (of each row) from the static silhouette area (i.e., the head area) as
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model-based features, which are less affected by the low frame-rate [6]. Since

each gait sequence may have several frames, the corresponding average width

vectors for the whole silhouette and the head area are used as input feature vec-

tors for model-based classification. In this work, the classification models based

on head width vector and silhouette width vector are referred to as Model 1

and Model 2, respectively. The process of generating the model-based feature

vectors for Model 1 and Model 2 is illustrated in Fig. 2.

During a comparison trial, the distance between two sequences can be mea-

sured based on the Euclidean distance. Let the dimensionality of the feature

vector (for Model 1 or Model 2) be r, given the gallery consisting c class-

es/sequences B = [b1, b2, ..., bc] ∈ Rr×c, and distance between a query gait

y ∈ Rr and a certain class bi, i ∈ [1, c] is:

d(y, bi) = ‖y − bi‖, i ∈ [1, c], (5)

which can be used as model-based information to update RSM-based classifiers.

3.3 Fusion with Model-based Information

Multimodal fusion is a popular way to enhance the performance by combining

two or more biometric modalities, and it has demonstrated its effectiveness in a

large number of biometric applications [19]. However, it assumes that multiple

modalities are available, which may not hold in less controlled environments.

For single modality, one popular form of fusion is to combine the classification

scores derived from different feature spaces, and this is especially useful for bio-

metric data with limited information. In [13], real GEI and synthetic GEI were

generated from the same gait silhouettes, before their classification scores were

fused at a score level. Although these two sources maybe highly correlated,

the enhanced performance suggests that there may exist some complementary
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power between the two different feature representations [13]. Due to the fac-

t that correlated information may be combined to boost the performance, we

fuse model-based and appearance-based methods in this work. We aim to en-

hance the performance of RSM, an appearance-based method, by incorporating

the model-based information, which is used to update the classifiers of the L

subspaces. Given a query gait and the gallery, through (4) we can get the cor-

responding distance vector dl ∈ Rc for the lth subspace. By using the min-max

rule [24], it can be normalized as:

dlrsm =
dl −min(dl)

max(dl)−min(dl)
, l ∈ [1, L]. (6)

Similarly, through (5) we can get the distance vector for the model-based meth-

ods. Let the distance vector be dmodel after min-max normalization, then the

fused distance vector (for the lth subspace) dlfusion can be updated using the

weighted sum rule:

dlfusion = ωdmodel + (1− ω)dlrsm, l ∈ [1, L], (7)

where ω ∈ [0, 1] is a weight factor for the model-based information. Based on

the fused distance vector, the Nearest Neighbour (NN) classifier is then used for

classification for the lth subspace. The final classification decision is achieved

through majority voting among all the L classifiers. Given a query gait and c

classes in the gallery with labels [W1,W2, ...,Wc], the optimal class label Ŵi is:

Ŵi = argmax
Wi

L∑
l=1

4l
Wi
, i ∈ [1, c], (8)
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where

4l
Wi

=


1, if dlfusion(Wi) = min(dlfusion),

0, otherwise,

i ∈ [1, c]. (9)

The weight factor ω is important for the score-level fusion for each subspace.

It is not appropriate to set ω too high or too low. According to (7), we can see

that our method becomes the conventional RSM system in our previous work

[6] when ω = 0. On the other hand, when ω = 1, it becomes the model-based

method. Intuitively, ω should be a small value, given the fact that model-based

features in such low quality videos are less reliable. A detailed evaluation of ω

is provided in Section 4.3.

3.4 Diversity Measurement

Diversity among the classifiers is deemed to be a key issue in classifier ensem-

ble [21]. Yet the relationship between ensemble accuracy and diversity is still

unclear, which may depend on the specific applications and the metrics used

for diversity measurement [21]. In this work, we use the pair-wise disagree-

ment measure [17, 22] to explore the relationship of diversity and the ensemble

accuracy of of our proposed gait recognition system.

Let Z = [z1, z2, ..., zN ] be the test set, and each sample zj includes both

AGI vector xj ∈ Rm and model-based feature vector yj ∈ Rr, i.e., zj =

{xj , yj} ∈ Rm+r, j = 1, 2, ..., N . After fusing model-based information into

the RSM system through (7), for simplicity we can represent the lth classifier

as Dl : Rm+r −→ {0, 1}, l ∈ [1, L] such that for zj ∈ Z, Dl(zj) = 1 if the

classification is correct, and Dl(zj) = 0, otherwise. Based on the classification

results from two classifiers Dl and Dk, we can count the numbers with respect
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to four different output scenarios as follows:

N11 = ∀j∈[1,N ] {#(Dl(zj) = 1 ∧Dk(zj) = 1)}, (10)

N10 = ∀j∈[1,N ] {#(Dl(zj) = 1 ∧Dk(zj) = 0)}, (11)

N01 = ∀j∈[1,N ] {#(Dl(zj) = 0 ∧Dk(zj) = 1)}, (12)

N00 = ∀j∈[1,N ] {#(Dl(zj) = 0 ∧Dk(zj) = 0)}. (13)

The disagreement of two classifiers Dk and Dl is equal to the ratio between the

number of cases on which Dk and Dl make different predictions (i.e., case N10

and case N01 ) to the total number of test samples N [21], i.e.,

Dis(Dk, Dl) =
N10 +N01

N
, k, l ∈ [1, L], (14)

where N = N11 +N10 +N01 +N00. We can also write (14) as:

Dis(Dk, Dl) = 1− (N00 +N11)

N
, k, l ∈ [1, L]. (15)

For a multiple classifier system D consisting of L base classifiers, the diversity

Div(D) is defined as the average disagreement level of all the L(L−1)/2 classifier

pairs, i.e.,

Div(D) =
2

L(L− 1)

L∑
l=1,l<k

Dis(Dk, Dl). (16)

Div(D) tends to be low when the average base classifiers are either too weak or

too strong, since on test set Z the outputs of most classifier pairs will be more

likely to be either Both Wrong (i.e., case N00) or Both Correct (i.e., case N11),

which are inversely proportional to Disagreement, according to (15).

Our aim is to enhance the ensemble accuracy by strengthening the weak
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classifiers (through fusing the model-based information) without sacrificing the

diversity. The experimental evaluation of the relationship among diversity, in-

dividual classifier accuracy and ensemble accuracy is provided in Section 4.3.

4 Experimental Evaluation

In this section, we first introduce the datasets and experimental settings used.

Then we discuss the performance sensitivity with respect to the random feature

number s used for each classifier. By using the model-based information, we

explain the enhanced ensemble accuracy in terms of the individual classifier

accuracy and diversity. Finally, we compare our system with other state-of-the-

art methods for gait recognition from videos with extremely low quality.

4.1 Dataset and Configuration

The proposed method is evaluated on the extremely low quality versions of the

indoor OU-ISIR-D database [14] and the outdoor USF database [15]. Both

databases provide the binarised aligned silhouettes. The original resolution and

frame-rate in OU-ISIR-D database are 128 × 88 pixels and 60 fps [14], while

they are 128 × 88 pixels and 30 fps in the USF database [15]. The intention

of this work is to propose a system that is capable of dealing with extremely

low video quality. Therefore, we down-sample the afore-mentioned databases to

create extremely low quality versions with lower resolution (i.e., 32× 22 pixels)

and frame-rate (i.e., 1 fps) in a manner similar to [1, 5].

The OU-ISIR-D database consists of two datasets, namely, DB-high (i.e.,

with small gait fluctuations) and DB-low (i.e., with large gait fluctuations).

For DB-high/DB-low, there are 100 subjects (1 subject per sequence) for both

the gallery and probe. For the outdoor USF database, 12 experiments were

initially designed by Sarkar et al. for algorithm evaluations against covariate
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Table 1: Datasets configuration. DB-high/DB-low has low/high gait fluctua-
tions; DB-outdoor has high levels of segmentation errors, and camera viewpoint
covariate.

Dataset DB-high DB-low DB-outdoor

#Subject 100 100 122

#Seq. per Subject 1 1 1

Resolution (pixels) 32 × 22 32 × 22 32 × 22

Frame-rate (fps) 1 1 1

#Frames per Seq. 6 6 4 ∼ 7

factors such as camera viewpoint, shoe, carrying condition, walking surface,

and elapsed time, etc. Since in this work we focus on human gait recognition

from extremely low quality videos, instead of evaluating our method on the 12

experiments (with default quality), only the extremely low quality version of

USF dataset A is used, and we refer to it as DB-outdoor in this work. DB-

outdoor includes 122 subjects (1 subject per sequence) for both the gallery and

probe, which are captured in different camera viewpoints (about 30◦ difference).

A summary of the datasets configuration is shown in Table 1.

The proposed model-based methods (Model 1 or Model 2) use the average

width vector of a certain area (head or the whole silhouette) as feature template,

as shown in Fig. 2. For Model 1, we simply define the head area is roughly

the topmost 1/3 of the whole silhouette. Specifically, for videos with resolution

32 × 22 pixels, the dimensionality for feature vector corresponding to Model 1

(resp. Model 2) is r = 10 (resp. r = 32).

The recognition accuracy is used as the performance measurement. Due to

the random nature, the results of different runs may vary to some extent. We

repeat all the experiments 10 times and report the mean values. In Table 3, we

also report results in terms of the mean and standard deviation.
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Figure 3: The accuracy distribution (%) with respect to random feature num-
ber (s), given both the probe and gallery videos with frame-rate at 1 fps and
resolution of 32× 22 pixels.

4.2 The Effect of Random Feature Number

For the initial eigenspace construction, we choose eigenvectors corresponding to

the leading 200 eigenvalues (i.e., v = 200), which preserves 100% of the variance.

For each random subspace, the corresponding base classifier has some general-

ization power for the unselected features (i.e., unselected subspaces) [17]. But

the underfitting problem may arise if random feature number s is too small. On

the other hand, the base classifier may be overfitted if random feature number

s is too large.

By setting the classifier number L = 1000, we check the sensitivity of the

random feature number s within the range [2, v − 2] on the three datasets (i.e.,

DB-high, DB-low, and DB-outdoor). The accuracy distribution with respect

to the random feature number s shown in Fig. 3 clearly indicates the effect of
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Table 2: Accuracy (%) of Model 1/Model 2 on the three datasets, given both
the probe and gallery videos with frame-rate at 1 fps and resolution of 32× 22
pixels.

- DB-high DB-low DB-outdoor

Model 1 57 51 6.56

Model 2 59 62 35.25

fusion based on underfitted (e.g., with s ≤ 20) or overfitted (e.g., with s ≥ 160)

classifiers. They tend to have lower accuracies, and the reasons may be: 1)

for underfitted/weak classifiers, there is not enough information for them to

make the correct classification; 2) for overfitted/strong classifiers, due to the

highly overlapped feature set, they tend to make the same prediction (i.e., lack

of diversity), which makes the fusion less effective.

4.3 Performance Gain Analysis

To enhance the overall fusion performance, we aim to use ancillary information

(from model-based methods) to enhance the underfitted classifiers. Although

Model 1 and Model 2 may be less reliable in terms of discriminative power (see

Table 2), they may provide information from a different perspective.

To measure the effect through fusing model-based information, three metric-

s are used, i.e., ensemble accuracy (Accensemble), individual classifier accuracy

(Accindiv), and diversity (Div). Accensemble is the performance through ma-

jority voting (see (8)). Accindiv is the average performance of the L classifiers.

Given a test set Z = [z1, z2, ..., zN ] and classifier Dl : Rm+r −→ {0, 1}, we have

Accindiv =
1

L

L∑
l=1

N∑
j=1

Dl(zj)

N
. (17)

Div is the average of the disagreement levels between any two distinct classifiers

in a multiple classifier system (see (16)).
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Based on different random feature numbers s = {20, 40, 80, 160}, we conduct

experiments on various values of the weight factor ω within the range [0, 1] with

an interval of 0.1. It is worth noting that when ω = 0, the proposed system

is the same as the conventional RSM system proposed in our previous work [6]

without fusing model-based information. On the three datasets (both the probe

and gallery videos with frame-rate at 1 fps and resolution of 32 × 22 pixels),

the performance distributions with respect to ω are shown in Fig. 4-6. Note

we do not report the results corresponding to Model 1 on DB-outdoor, which

provides extremely unreliable information in the outdoor environment (with

6.56% accuracy, see Table 2). From Fig. 4-6, we can observe:

1. Generally, Accensemble ∝ Div.

2. Without fusing model-based information (i.e., ω = 0), Div is relatively

low (e.g., Div ≈ 10%) when the base classifiers are either too strong (e.g.,

see Fig. 4(d), 5(d) when Accindiv ≈ 70% ) or too weak (e.g.,see Fig. 6(a)

when Accindiv ≈ 6%).

3. Div ∝ Accindiv holds only for weak classifier ensemble (e.g.,withAccindiv ≤

30%). When Accindiv ≥ 30%, however, Div starts to decrease with respect

to the strengthening base classifiers.

4. Model-based information may enhance Accindiv when low weight is as-

signed (e.g., ω ≤ 0.5). The enhancements tend to be more significant for

underfitted classifiers than overfitted classifiers.

Diversity is important for classifier ensemble, and our experimental results

suggest that Accensemble ∝ Div in our gait recognition scenarios. Diversity

can be increased by enhancing the weak classifiers (with lower Accindiv), which

can be constructed based on a small number of random features, e.g., s = 20.

Model-based information can then be used to increase the diversity, and thus

enhance Accensemble. Given the fact it is not beneficial to fuse stronger base
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classifiers, it is preferable to assign the model-based information lower weight

in order to preserve the diversity.

For model-based information, although Model 1 has lower accuracies in the

indoor datasets (see Table 2), it can provide some ancillary information to the

RSM system (with higher Accensemble). One explanation is that compared with

Model 2 (based on the whole silhouette), Model 1 (based on the head area) is

less correlated with the RSM-based weak classifiers, which are derived from the

whole body. DB-outdoor is more challenging due to higher levels of segmen-

tation errors and camera viewpoint covariate, and in the case the model-based

information can be extremely unreliable (see Table 2). Nevertheless, compared

with the best results from conventional RSM without fusing model-based in-

formation (see Fig. 3), incorporating Model 2 (with 35.25% accuracy) into

underfitted classifiers can still reduce the error rate by up to 5%.

Gait identification from extremely low quality videos is a challenging task

due to the lack of information. In the low resolution condition, it is also difficult

to capture other modalities (e.g., profile face [12]) to enhance the performance

of the gait recognition system. Experimental results suggest the effectiveness of

our method in this limited condition, since both model-based information and

RSM-based classifiers can be derived from the low quality silhouettes. Although

model-based information may be less reliable, they may reveal the data structure

from a different perspective. Using such information may enhance the RSM-

based weak classifiers without sacrificing the diversity.

4.4 Algorithms Comparisons

On DB-high and DB-low, we compare our method with other algorithms, i.e.,

morphing-based reconstruction (Morph) [2], Periodic Temporal SR (PTSR) [4],

and Example-based and Reconstruction-based Temporal SR (ERTSR) [5]. We
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Table 3: Algorithms comparisons in terms of accuracy (%) on DB-high/DB-low,
given both the probe and gallery videos with frame-rate at 1 fps and resolution
of 32× 22 pixels.

- DB-high DB-low

Morph [2] 52 N/A

PTSR [4] 44 N/A

ERTSR [5] 87 N/A

RSM (s = 20) [6] 79.50±1.90 75.20±2.49

RSM (s = 40) [6] 82.10±0.57 81.80±1.75

RSM+Model 1(s = 20) 90.80±1.48 88.40±1.43

RSM+Model 1(s = 40) 88.50±1.35 87.50±1.18

directly quote the results of Morph, PTSR, and ERTSR from [5], which are

based on the same experimental settings as ours.

As stated in Section 4.3, higher performance can be achieved by combining

low-weighted model-based information (Model 1) with weaker classifier ensem-

ble. In Table 3, we report our results (mean and standard deviation of 10 runs)

based on s = {20, 40}, ω = 0.2. It is also worth noting that our results are less

sensitive to s and ω within a certain range, as shown Fig. 4-5.

From Table 3, we can see that reconstruction-based methods ([2, 4]) tend to

have low accuracies. This is because significant artifacts can be generated due

to the extremely low frame-rate and low resolution, and reconstruction-based

methods [2, 4] are not able to cope with those artifacts effectively. EPTSR [5]

can greatly improve the accuracy by assuming that the degree of motion is the

same among gait cycles. However, this assumption does not hold when there are

large gait fluctuations (e.g., on DB-low) [5]. Compared with the three methods,

the RSM-based method in our previous work [6] is more adaptive and can be

applied in both DB-high an DB-low with reasonable accuracies. In this work,

fusing model-based information into the RSM system can further reduce the

error rate. This effect is more significant for weaker classifier ensembles (e.g.,

with s = 20).
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5 Conclusions

In this paper, we propose an enhanced classifier ensemble method for gait iden-

tification from extremely low quality videos. By incorporating the model-based

information into the RSM-based weak classifiers, the diversity of the classifiers

can be enhanced, which is positively correlated to the ensemble accuracy. We

also find that it is less beneficial to combine stronger base classifiers, since in

this case they tend to have the same prediction, which contributes negatively

to the diversity of the whole multiple classifier system. Compared with oth-

er state-of-the-art algorithms, our method delivers significant improvements in

terms of identification accuracy and generalization capability. In the future, we

will 1) investigate other ancillary information which can be derived from the low

quality videos; 2) design an adaptive mechanism on deciding the weight ratio

between RSM-based gait classifiers and the given ancillary information.
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Figure 4: On DB-high, performance distributions with respect to the weight
of model-based information (ω). (a)-(d) are based on classifier ensemble with
random feature number s = {20, 40, 80, 160}, respectively.
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Figure 5: On DB-low, performance distributions with respect to the weight
of model-based information (ω). (a)-(d) are based on classifier ensemble with
random feature number s = {20, 40, 80, 160}, respectively.
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Figure 6: On DB-outdoor, performance distributions with respect to the weight
of model-based information (ω). (a)-(d) are based on classifier ensemble with
random feature number s = {20, 40, 80, 160}, respectively.
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