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Philosophy

WORLD VIEW..........

many PhD programmes in the biomedical sciences have short-

ened their courses, squeezing out opportunities for putting
research into its wider context. Consequently, most PhD curricula
are unlikely to nurture the big thinkers and creative problem-solvers
that society needs.

That means students are taught every detail of a microbes life cycle
but little about the life scientific. They need to be taught to recognize
how errors can occur. Trainees should evaluate case studies derived from
flawed real research, or use interdisciplinary detective games to find logi-
cal fallacies in the literature. Above all, students must be shown the sci-
entific process as it is — with its limitations and potential pitfalls as well
asits fun side, such as serendipitous discoveries and hilarious blunders.

This is exactly the gap that T am trying to fill at
Johns Hopkins University in Baltimore, Mary-
land, where a new graduate science programme
is entering its second year. Microbiologist Arturo
Casadevall and T began pushing for reform in
early 2015, citing the need to put the philoso-

l I nder pressure to turn out productive lab members quickly,

is, the ‘Ph’ back into the PhD. We call our pro-
gramme R3, which means that our students learn
to apply rigour to their design and conduct of
experiments; view their work through the lens of
social responsibility; and to think critically, com-
municate better, and thus improve reproducibil-
ity. Although we are aware of many innovative
individual courses developed along these lines,
we are striving for more-comprehensive reform.

Our offerings are different from others at the graduate level. We
have critical-thinking assignments in which students analyse errors in
reasoning in a New York Times opinion piece about ‘big sugar, and the
ethical implications of the arguments made in a New Yorker piece by
surgeon Atul Gawande entitled “The Mistrust of Science. Our courses
on rigorous research, scientific integrity, logic, and mathematical and
programming skills are integrated into students’ laboratory and field-
work. Those studying the influenza virus, for example, work with real-
life patient data sets and wrestle with the challenges of applied statistics.

A new curriculum starts by winning allies. Both students and
faculty members must see value in moving off the standard track. We
used informal interviews and focus groups to identify areas in which
students and faculty members saw gaps in their training. Recur-
ring themes included the inability to apply theoretical knowledge in
statistical tests in the laboratory, frequent mistakes in choosing an
appropriate set of experimental controls, and significant difficulty
in explaining work to non-experts.

Introducing our programme to colleagues in the Johns Hopkins
life-sciences departments was even more sensitive. [ was startled by
the oft-expressed opinion that scientific productivity depended more
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Train PhD students tobe
thinkers not just specialists

Many doctoral curricula aim to produce narrowly focused researchers rather
than critical thinkers. That can and must change, says Gundula Bosch.

on rote knowledge than on competence in critical thinking. Several
principal investigators were uneasy about students committing more
time to less conventional forms of education. The best way to gain
their support was coffee: we repeatedly met lab heads to understand
their concerns.

With the pilot so new, we could not provide data on students’ per-
formance, but we could address faculty members’ scepticism. Some
colleagues were apprehensive that students would take fewer courses
in specialized content to make room for interdisciplinary courses on
ethics, epistemology and quantitative skills. In particular, they worried
that the R3 programme could lengthen the time required for students
to complete their degree, leave them insufficiently knowledgeable in
their subject areas and make them less productive in the lab.

We made the case that better critical thinking
and fewer mandatory discipline-specific classes
might actually position students to be more pro-
ductive. We convinced several professors to try
the new system and participate in structured
evaluations on whether R3 courses contributed
to students’ performance.

So far, we have built 5 new courses from scratch
and have enrolled 85 students from nearly a dozen
departments and divisions. The courses cover the
anatomy of errors and misconduct in scientific
practice and teach students how to dissect the
scientific literature. An interdisciplinary discus-
sion series encourages broad and critical think-
ing about science. Our students learn to consider
societal consequences of research advances, such
as the ability to genetically alter sperm and eggs.

Discussions about the bigger-picture problems of the scientific
enterprise get students to reflect on the limits of science, and where
science’s ability to do something competes with what scientists should
do from a moral point of view. In addition, we have seminars and
workshops on professional skills, particularly leadership skills through
effective communication, teaching and mentoring.

It is still early days for assessment. So far, however, trainees have
repeatedly emphasized that gaining a broader perspective has been
helpful. In future, we will collect information about the impact that
the R3 approach has on graduates’ career choices and achievements.

We believe that researchers who are educated more broadly will do
science more thoughtfully, with the result that other scientists, and
society at large, will be able to rely on this work for a better, more
rational world. Science should strive to be self-improving, not just
self-correcting. m

Gundula Bosch directs the R3 Graduate Science Initiative at Johns
Hopkins Bloomberg School of Public Health in Baltimore, Maryland.
e-mail: gbosch@jhu.edu
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Paintings by two ditterent painters
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And this?

learning from data for generalization to unseen cases



A transformer that
can transform into a
yellow car

. Entities have (explicit or implicit) representations



“Bank” in which
statement is more * A: As he walked by the bank, he saw some boats

semantically related to * B: As he walked by the bank, he saw some tellers
the picture?



i =
As he walked by the bank, he saw some boats As he walked by the bank, he saw some tellers

I. Semantic relatedness of entities is context dependent
and thus their representations are contextual



Il. Representation of any entity can allow us to
reconstruct or "generate” it
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1. Geospiza magnirostris.
3. Geospiza parvula.

2. Geospiza fortis.
4, Certhidea olivasea.
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IV. It is possible to develop representations in an
inductive manner (through empirical observations

13



US Airways Flight 1549

V. Intelligence is the capacity to develop and utilize causal
representations of entities, enabling an organism or system to act
effectively and adaptively.

14



Only if we could have a mechanism that would
enable developing such representations from
empirical observations



Deep Learning

Learning Representations from
training examples with
“layers” of biologically inspired
neurons




Working Principles



Exercise
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Exercise




Exercise
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But what if we have a linearly
inseparable problems?




Biological

Neurons and Networks

Soma Synapse

Synapse

\QZ/

Dendrites

Synapse
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Single Neuron: Representation

Dendrite
| Axon Erminal

* An abstraction of the biological neuron

Mucleys
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Can use any activation

Activation Functions s

Activation Functions

Sigmoid Leaky ReLU )
o(z) = i max(0.1z, x)

-1 ¢ 1o r—— 10
tanh Maxout
tanh(x) = e max(w{ T + by, wa x + by)
RelLU / ELU /

T x>0

maX(O; SU) _ ) {O:(ew . 1) <0 -:.n_..:‘ -
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How to train your
neural network

* Representation
* Evaluation
* Optimization




Representation: How does the model
produce its output?

X1l Wi xp=1 it neuron

Yi < yi = a(y) = a(Z Wijxj>

summation  activation =

“1 Wig

u; = W{x = Wij1X1 + Wiz X5 + Wio
What do we want?
Wi1X1 -+ Wi2Xo + Wio >0

Wi1X1 —+ Wi2X>2 —+ Wio <0
27



Evaluation

X1l wipn xp=1 it neuron

<:= yi=a(u) =a Zwijxj
J

a(Wi1x1 + Wixxs + wyg)

summation  activation

“1 Wia

. = Wi1X1 + Wiz Xy + Wi
ui = Wi X = Wilxl + Wizxz + Wio

Calculate how much error the line produces
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Optimization

X1l wipn xp=1 it neuron

summation  activation

“1 Wia

u; = Wl?‘x = Wi1X1 + Wi Xo + Wio

Update Weight parameters to reduce error (using gradient descent)
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How to fold the space?

* Change the definition of distance between points

* How to achieve this?
* By transforming the features of the examples to another space

X5

31



How to fold the space?

* Change the definition of distance between points

* How to achieve this?
* By transforming the features of the examples to another space

f(x)

X,

Input Feature Transformed Feature
representation representation
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How to fold the space?

* Change the definition of distance between points

* How to achieve this?
* By transforming the features of the examples to another space
* At an abstract level

f(x)

Input Feature Transformed Feature
representation representation
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Linear Discrimination Boundary for XOR using Higher Subspace Projection

‘i

X

0 0 0 -1

” x(D?
0 0 -1 X _ 2
¢ ([x(z) ) B x?
0 1 + Vx| 01 0 41
1 0 +1 > 1 0 0 +1
1 1 - 1 1 42 -1 y



How to fold the space?

* Change the definition of distance between points

* How to achieve this?
* By transforming the features of the examples to another space
* We can do it multiple times 0y

Input Transformed Feature
representation
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Why deep learning?

* By multiple layers of neurons, we can achieve
* Drawing lines
* Linear separability
* Implicit representation learning

* Deeper architectures are more “efficient at learning representations”
* We need fewer cuts to cut a shape if we fold many times
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DATA

Which dataset do
you want to use?

¥

Ratio of training to
test data: 50%

—e

Noise: 0

Batch size: 10
—e

REGENERATE

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

Epoch

000,246

FEATURES

Which properties do
you want to feed in?

Learning rate Activation Regularization Regularization rate Problem type
0.03 Tanh None 0 Classification
+ — 2 HIDDEN LAYERS OUTPUT
Test loss 0.003
Training loss 0.001
+ - + - g
4 neurons 2 neurons
R ——— P e —— =
] '—-""'u...-.-....- » “-
.--...E"‘ “
e e e e e ] -"
__________ 2 ] P-
"
L
-ﬂ‘ﬂ' - !
- |
F=-‘--""""---"— \ The outputs are °
L mixed with ying
weights, s
by the thickness of e
P the lines.

* This is the output
from one neuron
Hover fo see it
larger.

Colors shows -

data, neuron and ! !
i 0 1
weight values.

https://playground.tensorflow.org 37
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https://playground.tensorflow.org/

Convolutional
Neural Networks



Where's Waldo?




WHERE’S
WALDO?

SOCIAL DISTANCING EDITION
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'WHERE’S .. . 'WHERE'S
WALDO? & DR WALDO?

SOCIAL DISTANCING EDITION y ! SOCIAL DISTANCING EDITION
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e Assume we have a cutout of what Waldo looks like

* And if we “scan” (formally called correlate or convolve) the cutout

against the input image — we should see a peak at the location where
Waldo occurs in the input image

R

o WAl.DO?
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0
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|
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:

Model

43



e Assume we have a cutout of what Waldo looks like

* And if we “scan” (formally called correlate or convolve) the cutout
against the input image — we should see a peak at the location where
Waldo occurs in the input image

o i ey
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e Assume we have a cutout of what Waldo looks like

* And if we “scan” (formally called correlate or convolve) the cutout
against the input image — we should see a peak at the location where
Waldo occurs in the input image

WHERE'S
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e Assume we have a cutout of what Waldo looks like

* And if we “scan” (formally called correlate or convolve) the cutout
against the input image — we should see a peak at the location where
Waldo occurs in the input image

i 'WHERE’S
WAI.DO? -

SOCIAL DISTANCING EDITION




e What if | don’t have a cut out of Waldo?

e Can we find him still?

i 'WHERE’S
WAI.DO?

SOCIAL DISTANCING EDITION

. %ﬂ‘“




(Very) basic “convolutional neural
network”

Output
Input Filter (Feature Map) Target

% Activation
*

ne-
N\
N\
N\

\
Update \\ 1
=== Error
e Acts as a “detection” or “feature extraction” unit

https://github.com/foxtrotmike/CS909/blob/master/learn filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/cnn mnist pytorch.ipynb
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https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/cnn_mnist_pytorch.ipynb

Basic convolutional neural network for ML

Input Filter Feature Map Pooled Flattened

Output Target

49



CNNs

Input Filter Feature Map Pooled Filter Pooled Feature Map Flattened Output Target

Convolution Layer

Convolution Layer

el 4

https://poloclub.github.io/cnn-explainer/ .



https://poloclub.github.io/cnn-explainer/

A mostly complete chart of

o= NE@Ural Networks ...

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org
o http://www.asimovinstitute.org/neural-network-zoo/

/\ Noisy Input Cell

N/

- N
IOI.}M.:;I

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
O

. Hidden Cell : : i A
> Jstee Jotee SR v/
© Probablistic Hidden Cell - _ —

@ spiking Hidden Cell

© output cell

© Match Input Output Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
() () () ()

— —

. Recurrent Cell

. Memory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Different Memory Cell

T

Kernel :;‘c \‘:;‘v
KX XK

A/

A [
4 X

Convolution or Pool

[
X




© Backfed Input Cell

~ Input Cell

g Noisy Input Cell

@ Hidden Cell

© Probablistic Hidden Cell
@ spiking Hidden Cell

. Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell

. Different Memory Cell

" Kernel

6 Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

Y%

/3

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

R
0!&4“!'1“!0{“;:{“}

WAWAWAWAWE

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)

— —
-
o
@ -
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x;i = ¢(fi,t;)

NN

Positional Embedding: Where is it?

Feature Detection or Representation Building

Filter Feature Map Pooled Flattened Output Target
%o Convolutional
*. - Neural Network
Update
______________________ L paate Loss

(Vision) Transformers

Transform representation of each
token based on its semantic
relatedness or “attention” score
\g with other tokens

Optimus Prime  Optimus Prime

Build Patch Transformer Bumblebee Bumblebee
“ . »” . . . J Ja
Embedding Encoding via Predictor ;azz L
Representation Attention Blocks Ironhide Ironhide
dr: Ratchet Ratchet
c={xi€R%i=1..n}
Output —  Target
N \
______________________ Weight
Feature Embedding: What is it? Update Loss

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. “An Image Is Worth 16x16
Words: Transformers for Image Recognition at Scale.” arXiv, June 3, 2021. https://doi.org/10.48550/arXiv.2010.11929.
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https://doi.org/10.48550/arXiv.2010.11929

(Vision) Transformers (for classification)

Optimus Optimus
Build Patch Transformer Bumblebee Bumblebee
“" ¢ ”n o = 3 \] \]
Embedding Encoding via Predictor Lo L
Representation Attention Blocks Ironhide Ironhide
S, ={x; € Rdli =1..n} Ratchet Ratchet
x — l — aen
Output —  Target
= N \
Weight _ J.oss
xX: = ¢(f t') Feature Embedding: What is it? Update
L U =7 positional Embedding: Where is it?
Transform representation of each
token based on its semantic
relatedness or “attention” score
with other tokens
Optimus Optimus
A transformer that can transform into Build Token/Word Transformer Bumblebee Bumblebee
“ . »” . . . Jazz Jazz
a yellow car is called : Embedding Encoding via Predictor ; :
=] Representation Attention Blocks Ironhide Ironhide
l S, ={x; € Rd|i =1..n} Ratchet Ratchet
x — l - ann
. Feature Embedding: What is it? N Output —  Target
Xi = ¢(fir ti) Positional Embedding: Where is it? \\ \ \ *
S e e e e - N _ > _weight _ Loss
Update
: (NLP) Transformers (for next word prediction)
Simplest: ¢(f;,t;) = fi + ¢
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What is attention and why do you need

. ;
I t ° [Submitted on 12 Jun 2017 (v1), last revised 6 Dec 2017 (this version, v5)]

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, lllia Polosukhin

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an
encoder-decoder configuration. The best performing models also connect the encoder and decoder through an
attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention
mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks

show these models to be superior in quality while being more parallelizable and requiring significantly less time to
train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the
existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our
model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs,
a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes
well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

U(Xk; ev)

Z k(xq,xk; Bk)

Xq = A(xq; M(xq,Sxk); 0) = Z a(xq,xk }M(xq,Sxk); ek) v(xy; 0,) = )k(xq,xkr; Bk)
k

x
xkeM(xq,Sxk) xkeM(xq,Sxk) I‘IEM(xq'Sx

Tsai, Yao-Hung Hubert, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov. “Transformer
Dissection: A Unified Understanding of Transformer’s Attention via the Lens of Kernel.” ArXiv:1908.11775 [Cs, Stat],

November 11, 2019. http://arxiv.org/abs/1908.11775. .



http://arxiv.org/abs/1908.11775

Large Language Models: ChatGPT

* Simply: A transformer that generates the next word given some
context

* Multiple (>100) transformer layers with over a billion weights
* Trained over the entire internet corpus

* Fine-tuned (and controlled) with human feedback prompting

v, \¢ N

Optimus
A transformer that can transform into Build TOken/WOI"d TranSformer Bumblebee
“ . ” . o . Jazz
a yellow car is called . Embedding Encoding via Predictor :
=] Representation Attention Blocks Ironhide
l Sy ={x;€RYi=1..n} Ratchet
_ Feature Embedding: What is it? Output —  Target
Xi = ¢(fir ti) Positional Embedding: Where is it? \\ \\ \ *
S e e e e - N L ___ > _weight Loss
Update
: NLP) Transformers (for next word prediction
Simplest: ¢(f;, t;) = f; + t; (NLP) ( P )
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Graphs and their neural networks

This is a graph Barbie
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Graph Neural Networks

* Simple Graph Classification Example
* Node and edge level prediction problems also possible

N
QX AN AN Build

“Embedding” Graph Message Predictor Cancer Drug Cancer Drug
0 Representation of Passing Layers Not Cancer Drug  Not Cancer Drug
1 each node and edge
g Output —  Target
0 N ¥
Weight
————————————————————————— Todae — Loss

Input: Graph consisting of
Node set: what are things (each node has feature representation)
Edge set: how are they connected (each edge can have a feature representation but, in the very least, it tells us what nodes are connected by an edge)
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Generative Machine Learning

“Image showing "It's coming home"
in the context of the English team
winning the football final”

Conditional representation c |:>

Noise Input z |:>

Generator

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb

https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb



https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
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Philosophical basis Algorithms

|. Entities have (explicit or implicit) representations Learning representations

Il. Semantic relatedness of entities is context Using Convolutions, Transformers or Graph Layers

dependent and thus their representations are

contextual

lll. Representation of any entity can allow us to Generative Machine Learning: GANs, Latent Diffusion Models

reconstruct or “generate” it

IV. It is possible to develop representations in an Learning Algorithm: Optimization of model parameters
inductive manner (through empirical observations) through gradient descent based on existing data
Learning mechanisms: Self Supervised Learning, Next word
prediction
V. Intelligence is the capacity to develop and utilize Deep Reinforcement Learning?

causal representations of entities, enabling an
organism or system to act effectively and adaptively.

VI. Empirical observations may not be enough Causal Machine Learning



Next Steps

* Data Mining and Machine Learning Lecture Series
* Assumes knowledge of programming

Covers Python

Assumes no knowledge of ML

Starts from simple classification

Ends at Generative Adversarial Networks

b Ml @fayyazhere

https://youtu.be/CiHp5HGckQk

https://sites.google.com/view/fayyaz/courses/data-mining
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https://sites.google.com/view/fayyaz/courses/data-mining

	Title Slides
	Slide 1
	Slide 2: Philosophy
	Slide 3: Paintings by two different painters
	Slide 4: Who’s painting is this?
	Slide 5: And this?
	Slide 6: I. Entities have (explicit or implicit) representations
	Slide 8: “Bank” in which statement is more semantically related to the picture?
	Slide 9
	Slide 11
	Slide 13
	Slide 14
	Slide 16
	Slide 17: Deep Learning
	Slide 18
	Slide 19: Exercise
	Slide 20: Exercise
	Slide 21: Exercise
	Slide 22: But what if we have a linearly inseparable problems?
	Slide 23: Biological Neurons and Networks
	Slide 24: Single Neuron: Representation
	Slide 25: Activation Functions
	Slide 26: How to train your neural network
	Slide 27: Representation: How does the model produce its output?
	Slide 28: Evaluation
	Slide 29: Optimization
	Slide 30
	Slide 31: How to fold the space?
	Slide 32: How to fold the space?
	Slide 33: How to fold the space?
	Slide 34
	Slide 35: How to fold the space?
	Slide 36: Why deep learning?
	Slide 37: Let’s try it out
	Slide 38: Convolutional Neural Networks
	Slide 39: Where’s Waldo?
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: (Very) basic “convolutional neural network”
	Slide 49: Basic convolutional neural network for ML
	Slide 50: CNNs
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: What is attention and why do you need it?
	Slide 56: Large Language Models: ChatGPT
	Slide 57: Graphs and their neural networks
	Slide 58: Graph Neural Networks
	Slide 59: Generative Machine Learning
	Slide 60
	Slide 61
	Slide 62: Next Steps


