DA-STATS

Topic 04: Basic Probability and Bayes ' Theorem

Shan E Ahmed Raza
Department of Computer Science
University of Warwick
WARWICK

Outline

- What is Probability?
- Basic Concepts
- Sets and Probability
- Axioms of Probability
- Conditional Probability
- Bayes' Theorem

Books

Probability, Random Variables, Statistics, and Random Processes

Fundamentals \& Applications

Ali Grami

Probability

- Probability is the measure of
\rightarrow chance
\rightarrow randomness
\rightarrow likelihood of an event occurring
- Applications in
\rightarrow Science
\rightarrow Engineering
\rightarrow Business
\rightarrow Medicine
"Every day we performed our bloodsoaked calculus. Every day we decided who lived and who died. And every day we guided the Allied armies to victory without anyone knowing."

Games of Chance

- Roll of dice or location of a card in a deck
\rightarrow regulated and law-like if preconditions and processes were available
\rightarrow precise information could not be fully known
- Key
\rightarrow willfully ignorant of the myriad of small effects
\rightarrow focus on more general truths e.g., what tends to happen
\rightarrow construct a representation of set of outcomes
\rightarrow long-term regularities

Probability Distribution

A probability distribution representing a single roll of a pair of six-sided dice

Basic Concepts

- An experiment is a measurement procedure or observation process.
- The outcome is the end result of an experiment.
- An event is a single outcome or collection of outcomes.

Basic Concepts

- Deterministic experiment - if the outcome of an experiment is certain.
- Random experiment - the outcome may unpredictably vary.
- Trial - each repetition of the random experiment.
- Independent Trial - the outcome of one trial has no bearing on the other

Probability Model

- Simplified approximation to an actual random experiment.
- Averages obtained in long sequences of independent trials of random experiments almost always give rise to the same value.

Relative frequency in a tossing of a fair coin

Probability of Favourable Event

$$
P=\frac{\text { number of favourable events }}{\text { total number of events }}
$$

The Basic Principle of Counting

- Suppose that two experiments are to be performed. Then if experiment 1 can result in any one of m possible outcomes and if, for each outcome of experiment 1 , there are n possible
$(1,1),(1,2), \ldots,(1, n)$ outcomes of experiment 2 , then together how many possible outcomes are expected of the two experiments?
$(m, 1),(m, 2), \ldots,(m, n)$

The Basic Principle of Counting

- A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2 seniors. A subcommittee of 4 , consisting of 1 person from each class, is to be chosen. How many different subcommittees are possible?

$$
3 \times 4 \times 5 \times 2=120
$$

Permutations

- How many different ordered arrangements of 3 objects are possible?

$$
3 \times 2 \times 1=6
$$

- How many different ordered arrangements of n objects are possible?

$$
n(n-1)(n-2) \ldots(3)(2)(1)=n!
$$

n ! different permutations of the n objects.

Permutations

- How many different batting orders are possible for a baseball team consisting of 9 players?

$$
9!=362,880
$$

Permutations

- How many different letter arrangements can be formed from the letters PEPPER, when P's and E's are distinguished from one another?

$$
6!=720
$$

What if we do not distinguish P's and E's from one another?
Possible arrangements of P's and E's $=3!2$!
Possible letter arrangements of PEPPER $=\frac{6!}{3!2!}=60$

Combinations

- How many different groups of 3 could be selected from the 5 items $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E ?
$\rightarrow 5$ ways to select first item
$\rightarrow 4$ ways to select next item
$\rightarrow 3$ ways to select final item
\rightarrow Therefore, $5 \times 4 \times 3$, if the order of selection is relevant
\rightarrow However, group of A, B, C will be counted 6 times
\rightarrow The total number of groups that can be formed is

$$
\frac{5 \times 4 \times 3}{3 \times 2 \times 1}=10
$$

Combinations

- Determine the number of different groups of r objects that could be formed from a total of n objects.

$$
\frac{n(n-1) \ldots(n-r+1)}{r!}=\frac{n!}{(n-r)!r!}
$$

Combinations

- A committee of 3 is to be formed from a group of 20 people. How many different committees are possible?

$$
\binom{20}{3}=\frac{20 \times 19 \times 18}{3 \times 2 \times 1}=1140
$$

Set Theory and Its Applications to Probability

- A set is a collection of objects or things, which are called elements or members.
- Generally represented by symbol \{\}
- Notation:
$\rightarrow x \in A(x$ is a member of set $A)$
$\rightarrow x \notin A(x$ is not a member of set $A)$
- Cardinality of a set is the number of distinct elements in a set A represented as $|A|$
- The empty set or null set, denoted by \varnothing,

Sets and their relationships

Universal set

Union of Sets
U

Subset \subset

Intersection of Sets \cap

Equal sets

Difference of Sets

Complement
of a set

Mutually
Exclusive

Axioms of Probability

- Axiom 1: For every event $A, P(A) \geq 0$
- Axiom 2: $P(S)=1, S$ is the outcome space, set of all possible outcomes.
- Axiom 3:If A_{1}, A_{2}, \ldots is a countable sequence of events such that $\mathrm{A}_{i} \cap$ $A_{j}=\emptyset$ for all $i \neq j$ where \emptyset is the null event, that is they are pairwise disjoint (mutually exclusive) events, then $P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+$ $P\left(A_{2}\right)+\cdots$

Sets and Axioms of Probability

- Let $S=\{1,2,3, \ldots, n\}$
- Let $A \subset S, B \subset S, A \cap B=\varnothing$
- $P(A)=|A| / n$
- Axiom 1: $P(A) \geq 0$, for $A \subset S,|A| \geq 0 \Rightarrow P(A) \geq 0$
- Axiom 2: $P(S)=1,|S|=n, P(S)=\frac{n}{n}=1$
- Axiom 3: $P(A \cup B)=P(A)+P(B)=\frac{|A|}{n}+\frac{|B|}{n}$

The Addition Rule

$$
P(A \cup B)=P(A)+P(B)
$$

Assume that we roll one six-sided dice. What is the probability of coming up with a 2 (event A) or a 5 (event B)?

$$
\begin{gathered}
P(A)=\frac{\text { number of favourable events }}{\text { total number of events }}=\frac{1}{6}=0.17 \\
P(B)=\frac{\text { number of favourable events }}{\text { total number of events }}=\frac{1}{6}=0.17 \\
P(A \cup B)=P(A)+P(B)=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=0.33
\end{gathered}
$$

The Addition Rule

- Suppose we are about to win a game if we roll either an even number (event A) or a number greater than 4 (event B). What are our chances of winning?

$$
\begin{gathered}
P(A)=\frac{3}{6}=0.5, P(B)=\frac{2}{6}=0.333 \\
P(A \cup B)=? \\
A=\{2,4,6\}, B=\{5,6\}, A \cup B=\{2,4,5,6\}, A \cap B=\{6\} \\
P(A \cup B)=\frac{4}{6}=0.667 \\
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
=0.5+0.333-0.1667=0.667
\end{gathered}
$$

Not Mutually Exclusive

The Multiplication Rule

- Co-occurrence of two events
- Probabilistic independence

$$
\begin{gathered}
P(A)=\frac{3}{6}, P(B)=\frac{2}{6} \\
P(A) P(B)=\frac{6}{36}=0.1667
\end{gathered}
$$

\rightarrow occurrence of one event has no effect on determining the probability of occurrence of a second event

$$
P(A \text { and } B)=P(A) P(B)
$$

- Probabilistic dependence
\rightarrow occurrence of one event changes the determination of the probability of occurrence for the second event

$$
P(A \text { and } B)=P(A \mid B) P(B)
$$

The Multiplication Rule

What is the probability of randomly selecting a 4 (event A) and an 8 (event B) on two successive draws from a deck of cards?
Since sampling with replacement is used, one card is randomly drawn from the deck and then put back into the deck, and then a second card is randomly selected.

$$
P(A)=\frac{4}{52}=0.0769, P(B)=\frac{4}{52}=0.0769
$$

$$
P(A \text { and } B)=P(A) P(B)=(0.0769)(0.0769)=0.0059
$$

The Multiplication Rule

What is the probability of randomly selecting a person from the campus student population that is both a biological female (event A) and a psychology major (event B)?
Given: Suppose it is known that 10\% of the student population are psychology majors, 80% of the psychology majors are biological females, and 60% of the entire student population are biological females.

- If the events are independent, then we can use

$$
P(A \text { and } B)=P(A) P(B)=(0.6)(0.1)=0.06
$$

- The events are not independent

$$
P(A \text { and } B)=P(A \mid B) P(B)=(0.8)(0.1)=0.08
$$

Conditional Probability

- $P(A \mid B)$ Probability of event A given B has occurred.
\rightarrow Probability of A updated on basis of B has occurred.

Conditional Probability

- $P(A \mid B)$ if $B \subset A \Rightarrow A \cap B=B$?
$\rightarrow P(A \mid B)=100 \%$ or 1
- $P(A \mid B)$ if $A \cap B=\emptyset$
$\rightarrow P(A \mid B)=P(A)$
\Rightarrow if $P(A \mid B) \neq P(A)$, then events A and B are dependent.

Conditional Probability

- Determine the conditional probability that a family with two children has two girls, given they have at least one girl. Assume the probability of having a girl is the same as the probability of having a boy.
- Four possibilities: $\{G G, G B, B G$, and $B B\}$
\rightarrow each reflecting the order of birth, are equally likely

Conditional Probability

- Event $A=\{G G\}, \rightarrow P(A)=\frac{1}{4}$
- Event $C=\{G G, G B, B G\} \rightarrow P(C)=\frac{3}{4}$, we know one of the children is a girl.
- $A \cap C=\{G G\} \rightarrow P(A \cap C)=\frac{1}{4}$
- $P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{(1 / 4)}{(3 / 4)}=1 / 3$

Mutually Independent Events

WARWICK

■ Question Given the following probabilistic situation involving balls in an urn, are events Green and X independent? Are events Yellow and Y independent?

15	Green $-X$	$P=\frac{\text { number of favourable events }}{\text { total number of events }}$
15	Green $-Y$	$P(A$ and $B)=P(A) P(B)$
10	Red $-X$	$P(A$ and $B)=P(A \mid B) P(B)$
20	Red $-Y$	
15	Yellow $-X$	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

Mutually Independent Events

Step 1. To determine if events "Green" and " X " are independent, we need to first determine the values corresponding to Formulas 6.5 and 6.6. Let us assign "Green" to be event A and " X " to be event B. These are $P($ Green and $X)$, $P($ Green $), P(X), P($ Green $\mid X)$.

$P($ Green and $X)$	$=.15$
$P($ Green $)$	$=.3$
$P(X)$	$=.5$
$P($ Green $\mid X)$	

Step 2. Then we need to "run" both formulas. (Recall that we assigned "Green" to be event A and " X " to be event B.)

$$
\begin{aligned}
& P(A \text { and } B)=P(A) P(B) \\
& P(\text { Green and } X)=P(\text { Green }) P(X)=.3(.5)=.15 \\
& P(A \text { and } B)=P(A \mid B) P(B) \\
& P(\text { Green and } X)=P(\text { Green } \mid X) P(X)=.3(.5)=.15
\end{aligned}
$$

Mutually Independent Events

WARWICK

■ Question Given the following probabilistic situation involving balls in an urn, are events Green and X independent? Are events Yellow and Y independent?

15	Green $-X$	$P=\frac{\text { number of favourable events }}{\text { total number of events }}$
15	Green $-Y$	$P(A$ and $B)=P(A) P(B)$
10	Red $-X$	$P(A$ and $B)=P(A \mid B) P(B)$
20	Red $-Y$	
15	Yellow $-X$	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

Mutually Independent Events

Step 1. To determine if events "Yellow" and " Y " are independent, we need to first determine the values corresponding to Formulas 6.5 and 6.6. Let us assign "Yellow" to be event A and " Y " to be event B. These are $P($ Yellow and Y), $P($ Yellow), $P(Y), P($ Yellow $\mid Y)$.

$P($ Yellow and $Y)$	$=.15$
$P($ Yellow $)$	$=.4$
$P(Y)$	$=.5$
$P($ Yellow $\mid Y)$	$=.15 / .5=.3$

Step 2. Then we need to "run" both formulas. (Recall that we assigned "Yellow" to be event A and " Y " to be event B.)

$$
\begin{aligned}
& P(A \text { and } B)=P(A) P(B) \\
& P(\text { Yellow and } Y)=P(\text { Yellow }) P(Y)=.4(.5)=.2 \\
& P(A \text { and } B)=P(A \mid B) P(B) \\
& P(\text { Yellow and } Y)=P(\text { Yellow } \mid Y) P(X)=.3(.5)=.15
\end{aligned}
$$

This means "Yellow" and " γ " are dependent.

Independence and Mutual Exclusivity Are Different

- If two events are mutually exclusive, they cannot both occur in the same trial:
\rightarrow The probability of their intersection is zero.
\rightarrow The probability of their union is the sum of their probabilities.

Independence and Mutual Exclusivity Are Different

- If two events are independent, they can both occur in the same trial (except possibly if at least one of them has probability zero).
\rightarrow The probability of their intersection is the product of their probabilities.
\rightarrow The probability of their union is less than the sum of their probabilities, unless at least one of the events has probability zero.

Bayes' Theorem

- Is $P(A \mid B)=P(B \mid A)$?
- Conditional Probability Fallacy or Confusion of inverse
- If we know $P(A \mid B)$, we can calculate $P(B \mid A)$ given some further information.

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P(A \mid \operatorname{not} B) P(\operatorname{not} B)}
$$

Bayes' Theorem

- If we know $P(A \mid B)$ and want to determine the $P(B \mid A)$, we will additionally need the $P(B), P($ not $B)$ and $P(A \mid$ not $B)$
- If we know $P(B)$, we can determine $P($ not $B)$
$\rightarrow P(B)+P(\operatorname{not} B)=1$

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P(A \mid \operatorname{not} B) P(\operatorname{not} B)}
$$

Bayes' Theorem

\square Question Imagine it is true that 1\% of 40-year-old women who participate in a routine screening have breast cancer. Further imagine that 80% of women with breast cancer will receive a positive reading from the mammogram screen procedure. However, 9.6% of women without breast cancer will also receive a positive reading from the mammogram screening procedure (this is sometimes referred to as a "false positive" result). Now suppose a 40-year-old woman is told that her mammogram screening is positive for breast cancer. What is the likelihood that she actually has breast cancer?

Bayes' Theorem

■ Question Imagine it is true that 1\% of 40-year-old women who participate in a routine screening have breast cancer. Further imagine that 80% of women with breast cancer will receive a positive reading from the mammogram screen procedure. However, 9.6% of women without breast cancer will also receive a positive reading from the mammogram screening procedure (this is sometimes referred to as a "false positive" result). Now suppose a 40-year-old woman is told that her mammogram screening is positive for breast cancer. What is the likelihood that she actually has breast cancer?

$P(A \mid B)$	$=P($ positive reading \mid breast cancer $)$
$P(B)$	$=P($ breast cancer $)$
$P(A \mid$ not $B)$	$=P($ positive reading \mid not breast cancer $)$

It follows then that	
$P(A \mid B)$	$=.8$
$P(B)$	$=.01$
$P(A \mid n o t B)$	$=.096$

And we can deduce that
$P($ not $B) \quad=.99$

Bayes' Theorem

■ Question Imagine it is true that 1\% of 40-year-old women who participate in a routine screening have breast cancer. Further imagine that 80\% of women with breast cancer will receive a positive reading from the mammogram screen procedure. However, 9.6% of women without breast cancer will also receive a positive reading from the mammogram screening procedure (this is sometimes referred to as a "false positive" result). Now suppose a 40-year-old woman is told that her mammogram screening is positive for breast cancer. What is the likelihood that she actually has breast cancer?

Use Bayes' theorem to solve the equation

$$
\begin{aligned}
& P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P(A \mid \text { not } B) P(\text { not } B)} \\
& P(B \mid A)=\frac{.8(.01)}{.8(.01)+.096(.99)}=. \mathbf{0 7 8} \text { or about } \mathbf{7 . 8} \%
\end{aligned}
$$

"Anything at all is possible. Some things are unlikely. Some things will never happen. But they always could, at any time."

- Ashly Lorenzana

